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New Perspectives on QCD 
from AdS/CFT

• Progress in hadron physics: Must confront the 
structure of hadrons at the amplitude level!

• Proton is lightest eigenstate of the QCD 
Hamiltonian with B=1, Q=1.

• AdS/CFT provides a remarkably simple picture of  
the quark structure of the proton

• AdS/CFT: Anti-deSitter Space/ Conformal Field 
Theory
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New Perspectives on QCD 
from AdS/CFT

• LFWFs:  Fundamental description of hadrons at 
amplitude level

• Near Conformal QCD

• Holographic Model: Confinement at large 
distances and conformal behavior at short 
distances

• Model for LFWFs, meson and baryon spectra

• Quark-interchange and scattering amplitudes
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Light Front Wavefunctions
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Hadron Dynamics at the 
Amplitude Level

• DIS studies have primarily focussed on 
probability distributions:  integrated and 
unintegrated

• We need to determine hadron wavefunctions!

• Test QCD at the amplitude level!

• Phases, multi-parton correlations, spin, angular 
momentum
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!(x,k⊥)
H
QCD
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Dirac’s Front Form: Fixed != t+ z/c

Light-Front Wavefunctions

Invariant under boosts!   Independent of Pµ
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

The hadron state |Ψh〉 is expanded in a Fock-
state complete basis of non-interacting n-
particle states |n〉 with an infinite number of
components

∣∣∣Ψh(P
+, !P⊥)

〉
=

∑
n,λi

∫
[dxi d2!k⊥i]ψn/h(xi,!k⊥i, λi)

× |n : xiP
+, xi

!P⊥ + !k⊥i, λi〉

The hadron state |Ψh〉 is expanded in a Fock-
state complete basis of non-interacting n-
particle states |n〉 with an infinite number of
components

∣∣∣Ψh(P
+, !P⊥)

〉
=

∑
n,λi

∫
[dxi d2!k⊥i]ψn/h(xi,!k⊥i, λi)

× |n : xiP
+, xi

!P⊥ + !k⊥i, λi〉

measure of the phase space integration is
defined by

[dxi d2!k⊥i] = (16π3) δ

1−
n∑

j=1
xj

 δ(2)

 n∑
$=1

!k⊥$

 n∏
i=1

dxi

xi

d2!k⊥i

16π3 ,

(3)
and a normalized hadronic state 〈ψ|ψ〉 = 1,
can be expressed as a sum of overlap inte-
grals of light-front wavefunctions∑

n

∫
[dxi d2!k⊥i] |ψn/h(xi,!k⊥i, λi)|2 = 1. (4)
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• Discretized Light-Cone Quantization

• Transverse Lattice

• Bethe-Salpeter/Dyson Schwinger at fixed LF time

• Use AdS/CFT solutions as starting point!

• Many model field theories solved

• Structure of Solutions known

Solving the LF Heisenberg 
Equation
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In QCD the Hilbert space is constructed in
terms of a complete Fock basis of non inter-
acting constituents at fixed light-front time,
where the amplitudes are n-parton light-front
wave functions ψn/h corresponding to the ex-
pansion of color singlet hadron states

|Ψh〉 =
∑
n

ψn/h|n〉. (1)

The light-front Fock-state wavefunction pro-
vides a frame-independent representation of
relativistic composite systems in QCD at the
amplitude level, in terms of quark and gluon
degrees of freedom which carry the symme-
tries within the hadrons.

In QCD the Hilbert space is constructed in
terms of a complete Fock basis of non inter-
acting constituents at fixed light-front time,
where the amplitudes are n-parton light-front
wave functions ψn/h corresponding to the ex-
pansion of color singlet hadron states

|Ψh〉 =
∑
n

ψn/h|n〉. (1)

The light-front Fock-state wavefunction pro-
vides a frame-independent representation of
relativistic composite systems in QCD at the
amplitude level, in terms of quark and gluon
degrees of freedom which carry the symme-
tries within the hadrons.

In QCD the Hilbert space is constructed in
terms of a complete Fock basis of non inter-
acting constituents at fixed light-front time,
where the amplitudes are n-parton light-front
wave functions ψn/h corresponding to the ex-
pansion of color singlet hadron states

|Ψh〉 =
∑
n

ψn/h|n〉. (1)

The light-front Fock-state wavefunction pro-
vides a frame-independent representation of
relativistic composite systems in QCD at the
amplitude level, in terms of quark and gluon
degrees of freedom which carry the symme-
tries within the hadrons.

Light Front Fock State Methods

!= t+ z/c
!= t+ z/c

!= t+ z/c
!= t+ z/c



The Light-Front Fock 
Expansion

|p,Sz>=!
n=3

"n(xi, !k⊥i,#i)|n;k⊥i,#i>|p,Sz>=!
n=3

"n(xi,!k⊥i,#i)|n;!k⊥i
,#i>

|p,Sz>=!
n=3

"n(xi,!k⊥i,#i)|n;!k⊥i
,#i>

The Light Front Fock State Wavefunctions

!n(xi,!k⊥i,"i)

are boost invariant; they are independent of the hadron’s energy

and momentum Pµ.

The light-cone momentum fraction

xi =
k+
i

p+ =
k0i + kzi
P0+Pz

are boost invariant.

n

#
i

k+
i = P+,

n

#
i

xi = 1,
n

#
i

!k⊥i =!0⊥.

!



Quantum Mechanics + 
Relativity

• Fluctuations in momentum, position, particle 
number -- particle # cannot be determine

• QCD: Hadrons Fluctuate in Size -- >                   

• “Color Transparency”

• Hadrons can pass through a Nucleus without  
Interactions

• Fluctuations in Flavor,  Color, and Spin



Hadrons Fluctuate in 
Particle Number

• Proton Fock States

• Strange and Anti-Strange Quarks not Symmetric

• “Intrinsic Charm”: High momentum heavy quarks

• “Hidden Color”: Deuteron  not  always  p +  n

• Orbital Angular Momentum Fluctuations - 
Anomalous Magnetic Moment

|uud >, |uudg>, |uudss̄>, |uudcc̄>, |uudbb̄> · · ·

s(x) != s̄(x)
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Light Front Wavefunctions
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Structure functions: compute from square
of LFWFs

Form Factors: Overlap of initial and final
LFWFS

Generalized Parton Distributions: Overlap of
initial and final LFWFs, δn = 0,2.

Fixed Angle Scattering Reactions A + B →
C + D: Overlap of four LFWFS

Sivers Function, anomalous moments, EDM
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Holographic Model for Light-Front Wave
Functions

SJB and GdT

02/21/2005

Hadron form factors can be expressed as a sum of overlap integrals of light-front
wave functions:

F (q2) =
∑

n

∫ [
dxi

] [
d2!k⊥i

] ∑
j

ejψ
∗
n(xi,!k

′
⊥i, λi)ψn(xi,!k⊥i, λi), (1)

where the variables of the light-cone Fock components in the final-state are given by

!k′⊥i = !k⊥i + (1− xi) !q⊥, (2)

for a struck constituent quark and

!k′⊥i = !k⊥i − xi !q⊥, (3)

for each spectator. The momentum transfer is q2 = −!q 2
⊥ = −2P · q = −Q2. The

measure of the phase-space integration is

[
dxi

]
=

n∏
i=1

dxi√
xi

δ

(
1−

n∑
j=1

xj

)
, (4)

[
d2!k⊥i

]
= (16π3)

n∏
i=1

d2!k⊥i

16π3
δ(2)

(
n∑

!=1

!k⊥!

)
. (5)

We define the total position coordinate of a hadron or its transverse center of
momentum !R⊥ in terms of the energy momentum tensor T µν

!R⊥ =
1

P+

∫
dx−

∫
d2!r⊥T++!r⊥. (6)

In terms of partonic variables:

xi!r⊥i = !R⊥ +!b⊥i, (7)

where the variables !r⊥i are the physical coordinates and!b⊥ are the frame-independent
internal coordinates. Thus, !R⊥ =

∑
i xi!r⊥i and

∑
i
!b⊥i = 0.

Exact Representation of Form Factors using 
LFWFs
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x= xq Light-Front Wave Functions ψn(xi,"k⊥i, λi)

Parton distributions " Light-Front Probabil-
ities
modulo FSI effects
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Fig. 3. Light-cone time-ordered contributions to deeply virtual Compton scattering. Only the

contributions of leading power in 1/Q are illustrated. These contributions illustrate the factorization

property of the leading twist amplitude.

see Fig. 3. We specify the frame by choosing a convenient parametrization of the light-cone

coordinates for the initial and final proton:

P =
(

P+, !0⊥,
M2

P+

)
, (3)

P ′ =
(

(1− ζ )P+,− !∆⊥,
M2 + !∆2⊥
(1− ζ )P+

)
, (4)

whereM is the proton mass. We use the component notation V = (V +, !V⊥,V −), and our

metric is specified by V ± = V 0±V z and V 2 = V +V − − !V 2⊥. The four-momentum transfer
from the target is

∆ = P − P ′ =
(

ζP+, !∆⊥,
t + !∆2⊥
ζP+

)
, (5)

where t = ∆2. In addition, overall energy–momentum conservation requires ∆− =
P− − P ′−, which connects !∆2⊥, ζ , and t according to

t = 2P · ∆ = −ζ 2M2 + !∆2⊥
1− ζ

. (6)

As in the case of space-like form factors, it is convenient to choose a frame where the

incident space-like photon carries q+ = 0 so that q2 = −Q2 = −!q 2⊥:
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Abstract

We give a complete representation of virtual Compton scattering γ ∗p → γp at large initial photon

virtuality Q2 and small momentum transfer squared t in terms of the light-cone wavefunctions of

the target proton. We verify the identities between the skewed parton distributions H(x, ζ, t) and

E(x, ζ, t) which appear in deeply virtual Compton scattering and the corresponding integrands of

the Dirac and Pauli form factors F1(t) and F2(t) and the gravitational form factors Aq(t) and Bq(t)

for each quark and anti-quark constituent. We illustrate the general formalism for the case of deeply

virtual Compton scattering on the quantum fluctuations of a fermion in quantum electrodynamics at

one loop. ! 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Virtual Compton scattering γ ∗p → γp (see Fig. 1) has extraordinary sensitivity to

fundamental features of the proton’s structure. Particular interest has been raised by the

description of this process in the limit of large initial photon virtuality Q2 = −q2 [1–5].

Even though the final state photon is on-shell, one finds that the deeply virtual process

probes the elementary quark structure of the proton near the light-cone as an effective

local current, or in other words, that QCD factorization applies [3,6,7].

In contrast to deep inelastic scattering, which measures only the absorptive part of

the forward virtual Compton amplitude, ImTγ ∗p→γ ∗p , deeply virtual Compton scattering
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encode all of the bound state quark and gluon properties of hadrons, including their

momentum, spin and flavor correlations, in the form of universal process- and frame-

independent amplitudes.

The deeply virtual Compton amplitude can be evaluated explicitly by starting from the

Fock state representation for both the incoming and outgoing proton, using the boost

properties of the light-cone wavefunctions, and evaluating the matrix elements of the

currents for a quark target. One can also directly evaluate the non-local current matrix

elements (16) in the same framework. In the following we will concentrate on the

generalized Compton form factors H and E. Formulae analogous to our results can be

obtained for H̃ and Ẽ.

For the n → n diagonal term (∆n = 0), the relevant current matrix element at quark

level is∫
dy−
8π

eixP+y−/2
〈
1;x ′

1P
′+, $p′⊥1,λ′

1

∣∣ψ̄(0)γ +ψ(y)
∣∣1;x1P

+, $p⊥1,λ1
〉∣∣

y+=0,y⊥=0

=
√

x1x
′
1

√
1− ζδ(x − x1)δλ′

1λ1
, (38)

where for definiteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and E in

the domain ζ ! x ! 1 [17]:
√
1− ζ

1− ζ
2

H(n→n)(x, ζ, t) − ζ 2

4
(
1− ζ

2

)√
1− ζ

E(n→n)(x, ζ, t)

= (√
1− ζ

)2−n
∑
n,λi

∫ n∏
i=1

dxi d
2$k⊥i

16π3
16π3δ

(
1−

n∑
j=1

xj

)
δ(2)

(
n∑

j=1
$k⊥j

)
× δ(x − x1)ψ

↑∗
(n)

(
x ′
i ,

$k′⊥i ,λi

)
ψ

↑
(n)

(
xi, $k⊥i ,λi

)
, (39)

1√
1− ζ

∆1 − i∆2

2M
E(n→n)(x, ζ, t)

= (√
1− ζ

)2−n
∑
n,λi

∫ n∏
i=1

dxi d
2$k⊥i

16π3
16π3δ

(
1−

n∑
j=1

xj

)
δ(2)

(
n∑

j=1
$k⊥j

)
× δ(x − x1)ψ

↑∗
(n)

(
x ′
i ,

$k′⊥i ,λi

)
ψ

↓
(n)

(
xi, $k⊥i ,λi

)
, (40)

where the arguments of the final-state wavefunction are given by

x ′
1 = x1 − ζ

1− ζ
, $k′⊥1 = $k⊥1 − 1− x1

1− ζ
$∆⊥ for the struck quark,

x ′
i = xi

1− ζ
, $k′⊥i = $k⊥i + xi

1− ζ
$∆⊥ for the spectators i = 2, . . . , n.

(41)

One easily checks that
∑n

i=1 x ′
i = 1 and

∑n
i=1 $k′⊥i = $0⊥. In Eqs. (39) and (40) one has to

sum over all possible combinations of helicities λi and over all parton numbers n in the

Fock states. We also imply a sum over all possible ways of numbering the partons in the

n-particle Fock state so that the struck quark has the index i = 1.

S.J. Brodsky et al. / Nuclear Physics B 596 (2001) 99–124 111

encode all of the bound state quark and gluon properties of hadrons, including their

momentum, spin and flavor correlations, in the form of universal process- and frame-

independent amplitudes.

The deeply virtual Compton amplitude can be evaluated explicitly by starting from the

Fock state representation for both the incoming and outgoing proton, using the boost

properties of the light-cone wavefunctions, and evaluating the matrix elements of the

currents for a quark target. One can also directly evaluate the non-local current matrix

elements (16) in the same framework. In the following we will concentrate on the

generalized Compton form factors H and E. Formulae analogous to our results can be

obtained for H̃ and Ẽ.
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Example of LFWF representation 
of GPDs  (n => n)
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Analogous formulae hold in the domain ζ − 1 < x < 0, where the struck parton in the

target is an antiquark instead of a quark. Some care has to be taken regarding overall signs

arising because fermion fields anticommute. For details we refer to [17,27].

For the n + 1→ n − 1 off-diagonal term ("n = −2), let us consider the case where
quark 1 and antiquark n + 1 of the initial wavefunction annihilate into the current leaving

n−1 spectators. Then xn+1 = ζ −x1 and #k⊥n+1 = #∆⊥ − #k⊥1. The remaining n−1 partons
have total plus-momentum (1−ζ )P+ and transverse momentum− #∆⊥. The current matrix
element now is∫

dy−
8π

eixP+y−/2
〈
0
∣∣ψ̄(0)γ +ψ(y)

∣∣2;x1P
+, xn+1P+, #p⊥1, #p⊥n+1,λ1,λn+1

〉∣∣∣
y+=0,y⊥=0

= √
x1xn+1 δ(x − x1)δλ1−λn+1, (42)

and we thus obtain the formulae for the off-diagonal contributions to H and E in the

domain 0! x ! ζ :
√
1− ζ

1− ζ
2

H(n+1→n−1)(x, ζ, t) − ζ 2

4
(
1− ζ

2

)√
1− ζ

E(n+1→n−1)(x, ζ, t)

= (√
1− ζ

)3−n
∑
n,λi

∫ n+1∏
i=1

dxi d
2#k⊥i

16π3
16π3δ

(
1−

n+1∑
j=1

xj

)
δ(2)

(
n+1∑
j=1

#k⊥j

)
× 16π3δ(xn+1 + x1 − ζ )δ(2)

(#k⊥n+1 + #k⊥1 − #∆⊥
)

× δ(x − x1)ψ
↑∗
(n−1)

(
x ′
i ,

#k′⊥i ,λi

)
ψ

↑
(n+1)

(
xi, #k⊥i ,λi

)
δλ1−λn+1,

(43)

1√
1− ζ

∆1 − i∆2

2M
E(n+1→n−1)(x, ζ, t)

= (√
1− ζ

)3−n
∑
n,λi

∫ n+1∏
i=1

dxi d
2#k⊥i

16π3
16π3δ

(
1−

n+1∑
j=1

xj

)
δ(2)

(
n+1∑
j=1

#k⊥j

)
× 16π3δ(xn+1 + x1 − ζ )δ(2)

(#k⊥n+1 + #k⊥1 − #∆⊥
)

× δ(x − x1)ψ
↑∗
(n−1)

(
x ′
i ,

#k′⊥i ,λi

)
ψ

↓
(n+1)

(
xi, #k⊥i ,λi

)
δλ1−λn+1,

(44)

where i = 2, . . . , n label the n − 1 spectator partons which appear in the final-state hadron
wavefunction with

x ′
i = xi

1− ζ
, #k′⊥i = #k⊥i + xi

1− ζ
#∆⊥. (45)

We can again check that the arguments of the final-state wavefunction satisfy
∑n

i=2 x ′
i = 1,∑n

i=2 #k′⊥i = #0⊥. We imply in (43) and (44) a sum over all possible ways of numbering the
partons in the initial wavefunction such that the quark with index 1 and the antiquark with

index n + 1 annihilate into the current.
The powers of

√
1− ζ in (39), (40) and (43), (44) have their origin in the integration

measures in the Fock state decomposition (36) for the outgoing proton. The fractions x ′
i
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)
δλ1−λn+1,

(44)

where i = 2, . . . , n label the n − 1 spectator partons which appear in the final-state hadron
wavefunction with

x ′
i = xi

1− ζ
, #k′⊥i = #k⊥i + xi

1− ζ
#∆⊥. (45)

We can again check that the arguments of the final-state wavefunction satisfy
∑n

i=2 x ′
i = 1,∑n

i=2 #k′⊥i = #0⊥. We imply in (43) and (44) a sum over all possible ways of numbering the
partons in the initial wavefunction such that the quark with index 1 and the antiquark with

index n + 1 annihilate into the current.
The powers of

√
1− ζ in (39), (40) and (43), (44) have their origin in the integration

measures in the Fock state decomposition (36) for the outgoing proton. The fractions x ′
i

Example of LFWF representation 
of GPDs  (n+1 => n-1)
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• Light-Front Fock Expansions

• LFWFs boost invariant

• Direct connection to form factors, structure 
functions, distribution amplitudes,  GPDs 

• Higher Twist Correlation

• Orbital Angular Momentum

• Sum Rules

• Validated in QED,  Bethe-Salpeter

• DLCQ

• Higher Fock States:  intrinsic 
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[89]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

Large-Angle Compton Scattering 
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[109]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

“J=0 
Fixed 
Pole”

Two-
photon 
contact 
Interac
tion -- 
Unique 

to 
gauge 
theory

Close, Gunion, 
SJB
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Test J=0 Fixed Pole:  s2 dσ/dt(γ p → γ p) +



Cornell Measurements of Compton 
Scattering

J=0: Predict n=2
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• Fundamental measure of valence wavefunction

• Gauge Independent (includes Wilson line)

• Evolution Equations, OPE

• Conformal Expansion

• Hadronic Input in Factorization Theorems

Hadron Distribution 
Amplitudes 

Lepage; SJB
Efremov, Radyuskin

φ(xi, Q) ≡ Πn−1
i=1

∫ Q d2"k⊥ ψn(xi,"k⊥i)
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[33]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return
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F1(t) = const
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April 06, 2005 JLab 12 GeV upgrade  DOE Science Review 27

Proton Charge Form Factor @ 12GeV

Transverse quark momentum allows for a spin-flip amplitude, thus orbital

momentum plays a role and ln-2(Q2/!2)Q2F2/F1 ! constant  (Ji)

Here shown as ratio of Pauli & Dirac Form Factors F2 and F1

PQCD prediction:

F2(Q2)
F1(Q2)

→ Λ2
QCD ln2 Q2

Q2

Contribution from nonzero
orbital angular momentum Lz = ±1

Ji, Ma,Yuan

PQCD prediction:

F2(Q2)
F1(Q2)

→ Λ2
QCD ln2 Q2

Q2

Contribution from nonzero
orbital angular momentum Lz = ±1

Ji, Ma,Yuan

Ji, Ma, Yuan
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Counting Rules:

q(x) ∼ (1− x)2nspect−1 for x→ 1

F (Q2) ∼ ( 1
Q2)

(n−1)

dσ
dt (AB → CD) ∼ F (t/s)

s
(nparticipants−2)

nparticipants = nA + nB + nC + nD

dσ
d3p/E

(AB → CX) ∼ F (t̂/ŝ)×(1−xR)(2nspectators−1)

(p2
T )(nparticipants−2)

BF, MMT

Rules follow if theory is 
conformal at short distances
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Fig. 5. Cross section for (a) γγ→π+π−, (b) γγ→K+K− in the c.m. angular region
|cos θ∗| < 0.6 together with a W−6 dependence line derived from the fit of s|RM |.
(c) shows the cross section ratio. The solid line is the result of the fit for the data
above 3 GeV. The errors indicated by short ticks are statistical only.

6 Systematic errors

The dominant systematic errors are listed in Table 2. The uncertainty due
to trigger efficiency is estimated by comparing the yields of γγ → µ+µ− in
real and simulated data [9] after accounting for the background from e+e− →
µ+µ− nγ events (varying with W from 0.5–4.6%), which have the same topol-
ogy [13]. The uncertainty in the relative muon identification efficiency between
real and simulated data is used to determine the error associated with the
residual µ+µ− subtraction from the π+π− sample. We use an error of 100% of
the subtracted value for the non-exclusive background subtraction. We allow
the number of χcJ events to fluctuate by up to 20% of the measured excess to
estimate the error due to the χc subtraction that is applied for the energy bins
in the range 3.3 GeV < W < 3.6 GeV. The total W -dependent systematic
error is 10–33% (10–21%) for the γγ → π+π− (γγ → K+K−) cross section.

11

PQCD, AdS/CFT:

!"(##→ $+$−,K+,K−)∼ 1/W 6

|cos(%CM)| < 0.6

Hard Exclusive Processes:
 Fixed angle
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[18]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

Common Ingredients:  
Universal LFWFS, Distribution Amplitudes
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0 dσ/d|cos θ∗|, for

the π+π−(closed circles) and K+K−(open circles) processes. The curves are
1.227 × sin−4 θ∗. The errors are statistical only.

dσ

d|cos θ∗|(W, |cos θ∗|; γγ → X ) =
∆N(W , |cos θ∗|; e+e− → e+e−X )

Lγγ(W )∆W ∆|cos θ∗|ε(W , |cos θ∗|)∫Ldt
(2)

where N and ε denote the number of the signal events and a product of de-
tection and trigger efficiencies, respectively;

∫Ldt is the integrated luminosity,
and Lγγ is the luminosity function, defined as Lγγ(W ) = dσ

dW
(W ; e+e− →

e+e−X)/σ(W ; γγ→X).

The efficiencies ε(W, |cos θ∗|) for γγ → π+π− and γγ → K+K− are obtained
from a full Monte Carlo simulation [11], using the TREPS [12] program for
the event generation as well as the luminosity function determination. The
trigger efficiency is determined from the trigger simulator. The typical value
of the trigger efficiency is ∼ 93% for events in the acceptance.

The efficiency-corrected measured differential cross sections for γγ → π+π−

and γγ → K+K−, normalized to the partial cross section σ0 for |cosθ∗| < 0.6,
are shown in Fig. 4 for each 100 MeV wide W bin. The partial cross sections
σ0 for both processes, integrated over the above scattering angle range, are
shown in Fig. 5 (along with their ratio) and itemized in Table 1.
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Abstract

We have measured π+π− and K+K− production in two-photon collisions using
87.7 fb−1 of data collected with the Belle detector at the asymmetric energy e+e−

collider KEKB. The cross sections are measured to high precision in the two-photon
center-of-mass energy (W ) range between 2.4GeV < W < 4.1GeV and angular
region |cos θ∗| < 0.6. The cross section ratio σ(γγ → K+K−)/σ(γγ → π+π−) is
measured to be 0.89 ± 0.04(stat.) ± 0.15(syst.) in the range of 3.0GeV < W <
4.1GeV, where the ratio is energy independent. We observe a sin−4 θ∗ behavior of
the cross section in the same W range. Production of χc0 and χc2 mesons is observed
in both γγ → π+π− and γγ → K+K− modes.

Key words: two-photon collisions, mesons, QCD, charmonium
PACS: 12.38Qk, 13.25.Gv, 13.66.Bc, 13.85.Lg

1 Introduction

Exclusive processes with hadronic final states test various model calculations
motivated by perturbative or non-perturbative QCD. Two-photon production
of exclusive hadronic final states is particularly attractive due to the absence of
strong interactions in the initial state and the possibility of calculating γγ →
qq amplitudes. The perturbative QCD calculation by Brodsky and Lepage
(BL) [1] is based on factorization of the amplitude into a hard scattering
amplitude for γγ → qq̄qq̄ and a single-meson distribution amplitude. Their
prediction gives the dependence on the center-of-mass (c.m.) energy W (≡√

s)
and scattering angle θ∗ for γγ → M+M− processes

dσ

d|cos θ∗|(γγ → M+M−) ≈ 16πα2

s

|FM(s)|2
sin4 θ∗

, (1)

where M represents a meson and FM denotes its electromagnetic form factor.
Vogt [2], based on the perturbative approach, claimed a need for soft contribu-
tions, as his result for the hard contribution was well below the experimental
cross section obtained by CLEO [3].

Diehl, Kroll and Vogt (DKV) proposed [4] the soft handbag contribution to
two-photon annihilation into pion or kaon pairs at large energy and momentum
transfers, in which the amplitude is expressed by a hard γγ → qq subprocess
and a form factor describing the soft transition from qq to the meson pair.

1 on leave from Nova Gorica Polytechnic, Nova Gorica, Slovenia

4

PQCD:
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Critical Test of PQCD vs. “Handbag”
!"(##→$0$0)
!"(##→$+$−)

Critical Test of PQCD vs. “Handbag”

!"(##→ $0$0)
!"(##→ $+$−)

Critical Test of PQCD vs. “Handbag”

!"(##→ $0$0)
!"(##→ $+$−)

Handbag model (Diehl, Kroll et al ) neglects

e1× e2 cross terms

sjb, gpl
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γγ → π+π−

γγ → π0π0

Critical discriminant: Handbag vs.PQCD

γγ → K+K−

γγ → pp̄

γ∗γ → HH Timelike DVCS!
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d!
dt

("d→ #++#−)# d!
dt

("d→ pn) at high Q2

d!
dt

("d→ #++#−)# d!
dt

("d→ pn) at high Q2

Lepage, Ji, sjb• Deuteron six quark wavefunction:

•  5 color-singlet combinations of 6 color-triplets -- 
one state  is |n  p>

• Components evolve towards equality at short 
distances

• Hidden color states dominate deuteron form 
factor and photodisintegration at high 
momentum transfer

• Predict 

Hidden Color in QCD
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Hidden Color 
Fock State

Delta-Delta 
Fock State

Structure of   
Deuteron in 

QCD
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• Distribution Amplitude 5 x 1 Column Matrix

• n p at large distances 

• Equal weights at short distances

• Hidden Color: First principle prediction of QCD 

Evolution Equation for 
Deuteron

G.P. Lepage, C. R. Ji, SJB
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45 ref: Lepage, Ji, sjb
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QCD Prediction for Deuteron Form Factor 

Define “Reduced” Form Factor

Same large momentum transfer 
behavior as pion form factor

Chertok, Lepage, Ji, sjb
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Stan Brodsky,  SLAC High Energy Diffraction
Heidelberg 
3-11-2005

15% Hidden Color in the Deuteron
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Deuteron Reduced Form Factor

! Pion Form Factor×15%

Resembles pion 
form factor 
times 15%
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Asymptotic Solution has Expansion

Deuteron six-quark state has five color - singlet configurations, 
only one of which is n-p.

Look for strong transition to Delta-Delta

Hidden Color of Deuteron
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Counting Rules:

q(x) ∼ (1− x)2nspect−1 for x→ 1

F (Q2) ∼ ( 1
Q2)

(n−1)

dσ
dt (AB → CD) ∼ F (t/s)

s
(nparticipants−2)

nparticipants = nA + nB + nC + nD

dσ
d3p/E

(AB → CX) ∼ F (t̂/ŝ)×(1−xR)(2nspectators−1)

(p2
T )(nparticipants−2)

BF, MMT

Rules follow if theory is 
conformal at short distances
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FIG. 3. The scaled different ial cross sect ion s7 dσ
dt versus center-of-mass energy for the

γp → π+n at θcm = 90◦. The data from JLab E94-104 are shown as solid circles. The er-
ror bars for the new data and for the Anderson et al. data [1], include stat ist ical and systemat ic
uncertaint ies. Other data sets [26,27] are shown with only stat ist ical errors. The open squares
in the lower plot were averaged from data at θcm = 85◦ and 95◦ [28]. The solid linewas obtained
from the recent part ial-wave analysis of single-pion photoproduct ion data [29] up to Eγ= 2 GeV,
while the dashed line from the MAID analysis [30] up to Eγ= 1.25 GeV.

10

Test of PQCD Scaling

PQCD and AdS/CFT:

sntot−2d!
dt

(A+B→C+D) =
FA+B→C+D("CM)

s7d!
dt

(#p→ $+n) = F("CM)
ntot = 1+3+2+3= 9

Possible 
substructure at 
strangeness and 

charm thresholds

s7d!/dt("p→ #+n)∼ const

f ixed $CM scaling
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[27]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return
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[28]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return
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[84]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

Two Regimes
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Deuteron Photodisintegration & Dimensional Counting Rules 

PQCD and AdS/CFT:

sntot−2d!
dt

(A+B→C+D) =
FA+B→C+D("CM)

s11d!
dt

(#d→ np) = F("CM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11
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Deuteron-
Photodisintegration

PQCD and AdS/CFT:

sntot−2d!
dt

(A+B→C+D) =
FA+B→C+D("CM)

s11d!
dt

(#d→ np) = F("CM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11
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• Remarkable Test of Quark Counting Rules

• Deuteron Photo-Disintegration γd → np γd→ np

dσ
dt = F (t/s)

sntot−2

ntot = 1 + 6 + 3 + 3 = 13

γd→ np

dσ
dt = F (t/s)

sntot−2

ntot = 1 + 6 + 3 + 3 = 13

Scaling characteristic of
scale-invariant theory at short distances

Conformal symmetry
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Why do dimensional 
counting rules work so well?

• PQCD predicts powers of αs, logs, pinch 
contributions

• QCD coupling evaluated in IR regime!

• Conformal behavior at short distances, 
confinement at large distances: AdS/CFT
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• What is the behavior of αs(Q) at low momentum?

• QED, EW -- define coupling from observable, 
predict other observables

• How can DIS give information on αs?

QCD Coupling 
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!0.008 at s"m!
2 corresponds to a value of "MS(MZ

2)

"(0.117–0.122)!0.002, where the range corresponds to
three different perturbative methods used in analyzing the

data. This result is, at least for the fixed order and renorma-

lon resummation methods, in good agreement with the world

average "MS(MZ

2)"0.117!0.002 #46$. However, from the

figure we also see that the effective charge only reaches

"!(s)%0.9!0.1 at s"1 GeV2, and it even stays within the
same range down to s%0.5 GeV2. This result is in good
agreement with the estimate of Mattingly and Stevenson #47$
for the effective coupling "R(s)%0.85 for !s#0.3 GeV de-
termined from e

$
e

% annihilation, especially if one takes into

account the perturbative commensurate scale relation,

"!(m!!
2
)""R(s*) where, for "R"0.85, we have s*

!0.10 m!!
2
according to Eq. &7'. As we will show in more

detail in the next section, this behavior is not consistent with

the coupling having a Landau pole but rather shows that the

physical coupling is much more constant at low scales, sug-

gesting that physical QCD couplings are effectively constant

or ‘‘frozen’’ at low scales.

At the same time, it should be recognized that the behav-

ior of "!(s) in the region s#1 GeV2 is more and more
influenced by nonperturbative effects as the scale is lowered.

Even though the dominant nonperturbative effects cancel in

the sum of the vector and axial-vector contributions as can

be seen by looking at the corresponding effective charges

individually. Looking at "!
V(s), we see that it more or less

vanishes as the integration region moves to the left of the

two-pion peak in the hadronic spectrum. In the same way the

behavior of "!
A(s) at small scales is governed by the single

pion pole.

III. ANALYSIS OF THE INFRARED BEHAVIOR OF !"„s…

In order to be able to analyze the infrared behavior of the

effective coupling "!(s) in more detail, we will compare

with &a' the fixed-order perturbative evolution of the "!(s)

coupling on the one hand, and &b' with the evolution of cou-
plings that have nonperturbative or all-order resummations

included in their definition. For the latter case, many differ-

ent schemes have been suggested, and we will concentrate on

two of them: the one-loop ‘‘timelike’’ effective coupling

"eff(s) #3–5$, and the modified "̃V coupling calculated from

the static quark potential using perturbative gluon condensate

dynamics #48$.
The perturbative couplings evolve according to the stan-

dard evolution equation

das&s '

d ln s
"%(0as

2&s '%(1as
3&s '%(2as

4&s '%(3as
5&s '% . . . ,

&8'

where as(s)""s(s)/(4)). The first two terms in the ( func-
tion, (0 and (1, are universal at leading twist whereas the
higher order terms are scheme dependent. Currently the (
function is known to four loops ((3) in the MS scheme and
to three loops ((2) in the "! scheme. In the latter case there

also exists an estimate of the four-loop term. For complete-

ness these terms are summarized in the Appendix.

Figure 3 shows a comparison of the experimentally deter-

mined effective charge "!(s) with solutions to the evolution

equation &8' for "! at two-, three-, and four-loop order nor-

malized at m! . It is clear from the figure that the data on

"!(s) does not have the same behavior as the solution of the

&universal' two-loop equation which is singular1 at the scale
s!1 GeV2. However, at three loops the behavior of the per-
turbative solution drastically changes, and instead of diverg-

ing, it freezes to a value "!!2 in the infrared. The reason for
this fundamental change is, of course, the negative sign of

(! ,2 . At the same time, it must be kept in mind that this

result is not perturbatively stable since the evolution of the

coupling is governed by the highest order term. This is illus-

trated by the widely different results obtained for three dif-

ferent values of the unknown four-loop term (! ,3 which are

also shown.2 Still, it may be more than a mere coincidence

that the three-loop solution freezes in the infrared. Recently

it has been argued that "R(s) freezes perturbatively to all

orders #49$. Given the commensurate scale relation &6' this
should also be true perturbatively for "!(s). It is also inter-

esting to note that the central four-loop solution is in good

agreement with the data all the way down to s!1 GeV2.
The one-loop ‘‘timelike’’ effective coupling #3–5$

1The same divergent behavior would also be seen at three-and

four-loop order in the MS scheme where both (2 and (3 are posi-
tive for n f"3.
2The values of (! ,3 used are obtained from the estimate of the four

loop term in the perturbative series of R! , K4
MS"25!50 #30$.

FIG. 3. &Color online' The effective charge "! for nonstrange

hadronic decays of a hypothetical ! lepton with m!!
2 "s compared

to solutions of the fixed order evolution equation &8' for "! at two-,

three-, and four-loop order. Error bands include statistical and sys-

tematic errors.

BRODSKY et al. PHYSICAL REVIEW D 67, 055008 &2003'

055008-4

QCD Effective Coupling from

hadronic ! decay

Menke,Merino,Rathsman,SJB
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Define QCD Coupling from 
Observable

Re+e−→X(s) ≡ 3Σqe2q [1 + αR(s)
π ]

Γ(τ → Xeν)(m2
τ ) ≡ Γ0(τ → ud̄eν)×[1+ατ(m2

τ )
π ]

Re+e−→X(s) ≡ 3Σqe2q [1 + αR(s)
π ]

Γ(τ → Xeν)(m2
τ ) ≡ Γ0(τ → ud̄eν)×[1+ατ(m2

τ )
π ]

Relate observable to observable at 
commensurate scales
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[41]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

Menke,Merino,Rathsman,SJB
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A. Deur, et al
Preliminary

• Define effective charge (Grunberg)

∫ 1
0 dx[g1n(x, Q2)−g1p(x, Q2)] ≡ gA

6 (1−αg1(Q
2)

π )

• d
dQ2αg1(Q

2) = β(Q2):
standard QCD evolution

• β0, β1 universal

• Connect αg1(Q
2) to other observables

via Commensurate Scale Relations

• Eliminate αMS



63  Stan Brodsky,  SLAC

A. Deur, et al

Preliminary

G.Gabadadze,H.J.Lu,A.Kataev,

J.Rathsman,SJB

• Generalized Crewther Relation

[1− αg1(Q
2)

π ]× [1 + αR(s∗)
π ] = 1

at s∗ = CQ2.

• Exact at leading twist.

• No scale ambiguity!

• Extraordinary Test of QCD

• αg1(Q
2)

π :
Analytic at quark thresholds.
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PQCD LO Normalization depends on 
value of αs(Q2) at small Q*2  = (1/20) Q2!

lowest order 
PQCD

Resummation?

Q
2

 F
!

.0

.1

.2

.3

.4

.5

.6

.7

0                     2                     4 6 8

Q
2 

(GeV/c)
2

Amendolia !+e elastics
Ackermann et al.
Brauel et al. (VGL)
Bebek et al.
JLab E93-021
JLab @ 12 GeV (projected errors)

Schwinger-Dyson

QCD sum rules

pQCD (Stefanis et al.)

Figure 11: Projected measurements of the pion electromagnetic form factor, Fπ(Q2), made possible
by the proposed 12 GeV Upgrade. Also shown are various model predictions for its behavior in the
region Q2 ∼ few GeV2. Perturbative QCD predicts Fπ ∼ 1/Q2 for Q2 → ∞.

While deep inelastic scattering and other experiments have provided a detailed map of the
nucleon’s quark distributions at average (∼ 0.3) and small values of x, there has never been an
experimental facility capable of accurately measuring the cross sections throughout the “deep va-
lence region” (x > 0.5) where the three basic valence quarks of the proton and neutron dominate
the wavefunction. This represents a glaring gap in our knowledge of nucleon structure, especially
since there are qualitatively different predictions for the quark spin and flavor distributions in the
x → 1 limit. The 12 GeV Upgrade will for the first time provide the necessary combination of high
beam intensity and reach in Q2 to allow us to map out the valence quark distributions at large
x with high precision. These measurements will have a profound impact on our understanding of
the structure of the proton and neutron. They will also provide crucial input for calculating cross
sections for hard processes in high–energy hadron–hadron colliders such as the LHC, in searches
for the Higgs boson or for physics beyond the Standard Model.

Valence quark spin distributions at large x. The 12 GeV Upgrade will allow for mea-
surements of inclusive spin structure functions at large x with unprecedented precision. As an
example, Fig. 12 shows the neutron polarization asymmetry, An

1 , which is determined by a ratio
of spin-dependent to spin-averaged quark distributions. Most dynamical models predict that in
the limit where a single valence up or down quark carries all of the nucleon’s momentum (x → 1),
it will also carry all of the spin polarization (i.e., An

1 → 1 as x → 1). Existing data on An
1 end

before reaching the region of valence quark dominance, and show no sign of making the predicted
dramatic transition An

1 → 1 (recent data from the JLab Hall A experiment E99-117 [Zh03a, Zh04]
show the first hint of a possible upturn at the largest x value). There is a similar lack of data on
other deep inelastic scattering observables in this region.

Flavor structure of valence quarks at large x. Even in unpolarized deep–inelastic scat-
tering, where the available data are best, there are long-standing unresolved issues. One example
is the ratio of down to up quarks in the proton, d(x)/u(x), whose large–x behavior is intimately

17

Spacelike Pion Form Factor
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Fπ = 16πf2
π αs(Q2)

Q2

In practice: QCD: Approximately conformal

Phenomenological and theoretical evidence:

αs(Q2) : IR Fixed Point – nearly constant in
infrared

Typical BLM scale (Pion Form Factor)

Q2 = e−5/3 < (1− x)(1− y) > Q2 ∼ Q2

20

Running coupling typically evaluated at
modest scales.

C. Ji, Robertson, Pang, SJB

Alkhofer, et al. 
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Conformal symmetry: 
Template for QCD

• Initial approximation to PQCD; correct for non-
zero beta function

• Commensurate scale relations: relate observables 
at corresponding scales

• Infrared fixed-point for αs

• Effective Charges: analytic at quark mass 
thresholds

• Eigensolutions of Evolution Equations
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• Dimensional scaling of exclusive processes 
implies QCD is approximately conformal

• PQCD is conformal when β = 0

• Evaluate gluon exchange at small effective scales 
where αs is approximately constant

• Apply AdS/CFT

Why is Conformal Theory 
Relevant?
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• Bjorken Scaling of  DIS

• Counting Rules of Structure Functions at large x

• Dimensional Counting Rules for Exclusive 
Processes and Form Factors

• Conformal Relations between Observables

• No Renormalization Scale Ambiguity

Near-Conformal Behavior of 
LFWFs Lead to PQCD 

Scaling Laws
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Why is large x Important?

• Sensitive to details of hadronic structure
valence, sea quark, and gluon distributions

• Detailed predictions from PQCD and AdS/CFT

• Helicity Retention & Spectator Counting
Rules

• DGLAP must be modified:
quenched at x→ 1
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• Measure behavior of proton LFWF
at large xbj

• Strong function of quark spin projection
relative to proton spin projection

PQCD:

q(x) ∼ (1− x)3 Sz
q = Sz

p

q(x) ∼ (1− x)5 Sz
q = −Sz

p

p

u

xu

d

gSz = +1/2 

'

!"

p

u

xu

d

'

!"

4-2005
8716A1

Traditional PQCD Method
Iterate QCD Kernel

Lepage,SJB

Ji,Ma,Yuan

Burkardt,Schmidt,SJB

Farrar,Jackson
Gunion
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The spectator system has a timelike mass
(P − k)2 = M2

spect > 0

The struck quark is far off-shell:

k2
F −m2 = x[M2

p −M2] " −k2⊥+M2
spect

1−x

Thus k2
F → −∞ for xbj → 1.

p

u

xu

d

gSz = +1/2 

'

!"

p

u

xu

d

'

!"

4-2005
8716A1

Why is PQCD Relevant?

Lepage, SJB
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• Four hard propagators, two compensated
by numerator factors

• PQCD interactions valid at |k2| > Λ2
QCD

Same regime as DGLAP

• Cannot postpone PQCD validity

• Duality with Exclusive Channels
at fixed W2 = (1−x)Q2

x for σT (x, Q2), σL(x, Q2)

• Suppression at x→ 1 if Lz #= 0.

p

u

xu

d

gSz = +1/2 

'

!"

p

u

xu

d

'

!"

4-2005
8716A1

PQCD Analysis at LO 

Lepage, SJB
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3.2 (1− x)3
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Valence quark distributions in the pion

q±(x) ∼ (1− x)2

Higher twist term:

C
Q2 (longitudinal polarization)

Dominates Drell-Yan reactions at large xF

dσ
dxF d cos θ(πp→ $+$−X)

∝ (1− xF )2(1 + cos2 θ) + C
Q2(sin

2 θ)

-2o- 

lr 

iT * 

s 

tL+ 

q cl 
P- 

P 

2-79 
3557A19 

Fig. 19. Representative 
contribution to Drell-Yan 
np+u+~-X cross section. 
The gluon exchange in the 
pion wavefunction is res- 
ponsible for the power 
law fall off at x+1 
[Eq. (5.1-3)l and the 
power law tail at large 
k? [Eq. (8.1)1. 

-0.6 

0 0.4 0.6 0.8 1.0 
X 

19 

0 0.4 0.8 

XF ,526iI 

Fig. 20. (a) The pion structure 
function at large x. The solid 
line is the prediction F?$- (l-~>~ 
+ C/Q2. (b) Prediction for the u + 

angular distribution l+acos28+ 
where 8+ is measured relative to 
the incident pion in the ~+p- rest 
frame. (From Ref. 38.) 

2 
--b 
o- 
x 

0.6 

dominance of the meson's longitudinal structure function at large x 
and fixed Q2 (see Fig. 20b). Figure 20a also shows that the pre- 
dicted form of the structure function F?j(x,Q2) w (~-x)~+C/Q~ is not 
inconsistent with recent fits to the data. The dashed line is the 
experimental form (l-x)1*01 given in Ref. 39. 

6. Fixed Angle Scattering 

The techniques which we have discussed for obtaining asymptotic 
results for form factors can be extended to the computations of any 
exclusive process involving large momentum transfer between color 
singlets. Here we shall focus on fixed angle hadronic scattering 
da/dt(A+B+C+D) as s-t- at fixed t/s or 8,,. In general, each 
hadron is represented by its Fock state decomposition; the leading 
power law dependence as s+ 03 is obtained from the Fock state with 
the minimum number of interacting components. The analysis of fixed 
angle scattering is complicated by pinch singularities, so we must 
consider two different scattering mechanisms. 

A. Hard Subprocesses 

In this case the momentum transfer between constituents occurs 
through a single hard scatterin 

9 
amplitude TB with all internal legs 

off-shell and proportional to pT=tu/s. The fixed angle amplitude 
is then to leading order in as(ps) (see Fig. 21), 

v/fAB + CD = dxi O:(xc,PG) $i(xd,pG) (6.1) 

Higher Twist Essential at x→ 1
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Figure 16: The potential of the 12 GeV Upgrade for exploring quark–hadron duality in the nucleon
structure functions F2 (upper row) and FL (lower row). The left panels show the Hall C data taken
at 6 GeV, the right panels the projected high–x and high–Q2 data at 12 GeV.

the resonance region as well as the deep inelastic scattering regime. At 6 GeV, measurements are
confined largely to the resonance region. With the 12 GeV Upgrade, we shall have the kinematic
coverage necessary to probe the high-energy piece of the extended GDH integral, and map its
Q2–evolution. This program will bring GDH studies to a new level of quantitative precision.

1.C The Physics of Nuclei

Lying at the core of every atom, at the 10−15 m scale, the nucleus comprises over 99% of the atom’s
mass. It is a unique many-body system that can be understood quantitatively as assemblies of
individual protons and neutrons bound by an effective nuclear force. Nuclear physics describes the
dominant two-body NN force at “long range” (the radius of the nucleus or more precisely the pion
Compton wave length) as being mediated by the exchange of pions, the lightest hadron Nature
provides. This attractive force is delicately balanced by a force at shorter distances that repels.
When protons and neutrons are at “short range”, the nuclear force reverses and they repel each
other. This delicate interplay is not well understood, yet it enables the existence of atomic nuclei
and the chemical elements.

At 12 GeV, we can probe the interesting details of the force at distance scales much less than
the pion Compton wave length, where the effects of two-pion exchange, vector meson exchange,
and quark exchange all compete, and where the contributions from virtual baryon resonances (such
as the ∆) might be resolved. Although well constrained phenomenologically by the large body of
pp and np elastic scattering data, it is not yet understood under what circumstances the effective
nuclear force can be described in terms of the exchange of mesons, and when it is more efficient to
describe the force in terms of the underlying quark-gluon exchange forces.

If the nuclear force is the residue of the even stronger QCD force between quarks, forever
confined in the nucleons, are protons and neutrons under every circumstance the best quasi-particles
to describe the nucleus, or can we still see an imprint of the basic quarks and gluons? After many

23

Duality at fixed W
(1− x)3 at large x

dual to
t2F1(t) = const at large t

PQCD prediction:

F2(Q2)
F1(Q2)

→ Λ2
QCD ln2 Q2

Q2

Contribution from nonzero
orbital angular momentum Lz = ±1

Ji, Ma,Yuan
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xbj → 1 Is A Far Off-Shell Domain of The
Hadron Light-Front Wavefunction ψn(xi, k⊥i, λi)

∑n
i=1 xi = 1

Thus xbj → 1 implies xi → 0 for all spectators

x ≡ k+

P+ ≡ k0+kz

P0+Pz

Thus xbj → 1 requires kz → −∞
since k2⊥+ m2 &= 0.

Why is PQCD Relevant?
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PQCD:

Valence quark distributions in the proton
nspectator = 2

q+(x) ∼ (1− x)3 Sz
q = Sz

p

q−(x) ∼ (1− x)5 Sz
q = −Sz

p

Sea quark distributions nspectator = 4

q+(x) ∼ (1− x)7 Sz
q = Sz

p

q−(x) ∼ (1− x)9 Sz
q = −Sz

p
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SU(6) Flavor-Spin Symmetry:

u+ : u− : d+ : d−

5/3 : 1/3 : 1/3 : 2/3 for proton

Thus
d(x)/u(x)→ d+(x)/u+(x)→ 1/5
at x→ 1 in proton

g1 =
∑

e2q [q
+(x)− q−(x)]

F2p(x) = 8/9× xup(x) + 1/9× xdp(x)
→ 8/9 + 1/45 = 41/45u+

p

F2n(x) = 4/9× xun(x) + 2/9× xdn(x)
→ 4/45 + 2/9 = 14/45d+

n

F2n(x)
F2p(x)

→
∑

q/p e2q q+p (x)∑
q/p e2q q+n (x)

=
51

9+
4
9

54
9+

1
9

= 3
7

at x→ 1

PQCD

= 0.4286 ...

Farrar Jackson
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World data for A1

Proton Neutron
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-15- 

-Y. (NJ 2 
Fl(Q2> N (log Q2/A2) ' 

F2 (Q2) w M.m(Q2>_ F,(Q2) 

Q2 

(2.27) 

(2.28) 

The calculation of the nucieon anomalous dimensions Yj(N) is in 
progress. 15 These results agree with the dimensional counting pre- 
dictions and verify that the empirical CM-GE-l/Q4 scaling 12aws are 
consistent with quantum chromodynamics, modulo over-all 1ogQ 
corrections. 

3. The Inclusive-Exclusive Connection 

The above predictions for the form of the asymptotic form factor 
may seem somewhat paradoxical since QCD asymptotic freedom correc- 
tions to Bjorken scaling of hadronic structure functions appear to 
be relatively much stronger. In particular, as shown in Ref. 29, 

QCD predicts structure functions at large x of the form 

(3.1) 

where (1-x)' is the effective power-behavior at Q2wO(k2), and 

cF 
z(Q2,k2) = q- - O(log log Q2) . (3.2) 

and P(t) is a normalization factor. 2g If one uses this form for 
l-x 2 

fixed&X2 = ---x- Q ; then one obtains transition form factors 

F2(Q2) N 

2V+l+?(Q2,k2) 

i ) 

d/N 

Q2 
P(F) (3.3) 

which fall faster than any power! 30 

In fact, this "derivation" is incorrect in the fixedUM2, high 
Q2 domain because it ignores the fact that the struck hadronic con- 

stituent is far off-shell. In general the constituent mass that sets 

the lower limit in the c integration is given by 

(3.4) 

Conflict between DGLAP and Exclusive/Inclusive
Duality

DGLAP:

where V is the PQCD Counting Rule predic-
tion

If one uses this form at fixed W2 = (1−x)Q2

x ,
one obtains transition form factors

which falls faster than any power!

Conflict between DGLAP and Exclusive/Inclusive
Duality

DGLAP:

where V is the PQCD Counting Rule predic-
tion

If one uses this form at fixed W2 = (1−x)Q2

x ,
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The calculation of the nucieon anomalous dimensions Yj(N) is in 
progress. 15 These results agree with the dimensional counting pre- 
dictions and verify that the empirical CM-GE-l/Q4 scaling 12aws are 
consistent with quantum chromodynamics, modulo over-all 1ogQ 
corrections. 

3. The Inclusive-Exclusive Connection 

The above predictions for the form of the asymptotic form factor 
may seem somewhat paradoxical since QCD asymptotic freedom correc- 
tions to Bjorken scaling of hadronic structure functions appear to 
be relatively much stronger. In particular, as shown in Ref. 29, 

QCD predicts structure functions at large x of the form 

(3.1) 

where (1-x)' is the effective power-behavior at Q2wO(k2), and 

cF 
z(Q2,k2) = q- - O(log log Q2) . (3.2) 

and P(t) is a normalization factor. 2g If one uses this form for 
l-x 2 

fixed&X2 = ---x- Q ; then one obtains transition form factors 

F2(Q2) N 

2V+l+?(Q2,k2) 

i ) 

d/N 

Q2 
P(F) (3.3) 

which fall faster than any power! 30 

In fact, this "derivation" is incorrect in the fixedUM2, high 
Q2 domain because it ignores the fact that the struck hadronic con- 

stituent is far off-shell. In general the constituent mass that sets 

the lower limit in the c integration is given by 

(3.4) 
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=> 
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The behavior of structure functions in the large x region can 
be computed in leading order in a, from the infinite set of diagrams 

indicated in Fig. 17. The infinite set of horizontal gluon ladder 
graphs above the quark leg 
labeled k2 in the figure 
builds up the standard QCD 
corrections to Bjorken scaling 
and q2 dependence of the 
structure function moments. 
The main power law dependence 
at x-l is given by the mini- 
mal number of (vertical) 

gives 

[dk;;fN 

gluon exchanges required to 
stop the hadronic spectators. 
For the case of the nucleon 
the leading Fock state com- 

,111.11 ponent is the Iqqq> state, 
and two gluon exchanges with 

Fig. 17. Analysis of deep in- 
elastic scattering (virtual Comp- 
ton amplitude) to leading loga- 
rithmic order in perturbation 
theory. See Eq. (3.7). 

off-shell masses of order 
k$mO(($f+G2)/(l-x)) are 
required. These minimal hard 
gluon exchange diagrams give 
the analogue of TB in the 
form factor calculation. 

In addition, the remaining infinite set of vertical gluon ex- 

change diagrams (ordered, as usual, in momenta) leads to the evolu- 

tion of the hadro 
9 

ic wavefunction from the soft region X 
2 to the 

off-shell value k,. As in the form factor calculation, this leads 
y.(N) 

to a series of anomalous logarithms [as( J determined by the 

eigenvalues of the kernel for the Fock state. Combining factors, 

the leading behavior is given by 

Application of DGLAP is incorrect.

Struck quark is off-shell at fixed W2

where m̃ is the mass of the spectator system.

Application of DGLAP is incorrect.

Struck quark is off-shell at fixed W2

where m̃ is the mass of the spectator system.

-16- 

-2 
where m is the square of the invariant mass of the remaining spec- 
tators and gL and z are the struck constituent's light-cone coordi- 
nates in the hadronic wavefunction. Since z>x, and x is near 1, 

-2 
kz+ m 

-2 

AC2 N 1 x N 
k:+ m 

&iv2 
Q2 

. i.e. : k2-O(Q2) at fixed ,4L2. Thus 

; = 4cF 
ll-2/3nf log 

as (k2> 

as (Q2) 

(3.5) 

(3.6) 

=> 
cF 
7 as(Q2) 1% at fixedJL2, Q2+". 

i.e.: z actually vanishes as l/logQ2 in the fixed &12 domain. 

The behavior of structure functions in the large x region can 
be computed in leading order in a, from the infinite set of diagrams 

indicated in Fig. 17. The infinite set of horizontal gluon ladder 
graphs above the quark leg 
labeled k2 in the figure 
builds up the standard QCD 
corrections to Bjorken scaling 
and q2 dependence of the 
structure function moments. 
The main power law dependence 
at x-l is given by the mini- 
mal number of (vertical) 

gives 

[dk;;fN 

gluon exchanges required to 
stop the hadronic spectators. 
For the case of the nucleon 
the leading Fock state com- 

,111.11 ponent is the Iqqq> state, 
and two gluon exchanges with 

Fig. 17. Analysis of deep in- 
elastic scattering (virtual Comp- 
ton amplitude) to leading loga- 
rithmic order in perturbation 
theory. See Eq. (3.7). 

off-shell masses of order 
k$mO(($f+G2)/(l-x)) are 
required. These minimal hard 
gluon exchange diagrams give 
the analogue of TB in the 
form factor calculation. 

In addition, the remaining infinite set of vertical gluon ex- 

change diagrams (ordered, as usual, in momenta) leads to the evolu- 

tion of the hadro 
9 

ic wavefunction from the soft region X 
2 to the 

off-shell value k,. As in the form factor calculation, this leads 
y.(N) 

to a series of anomalous logarithms [as( J determined by the 

eigenvalues of the kernel for the Fock state. Combining factors, 

the leading behavior is given by 

-16- 

-2 
where m is the square of the invariant mass of the remaining spec- 
tators and gL and z are the struck constituent's light-cone coordi- 
nates in the hadronic wavefunction. Since z>x, and x is near 1, 

-2 
kz+ m 

-2 

AC2 N 1 x N 
k:+ m 

&iv2 
Q2 

. i.e. : k2-O(Q2) at fixed ,4L2. Thus 

; = 4cF 
ll-2/3nf log 

as (k2> 

as (Q2) 

(3.5) 

(3.6) 

=> 
cF 
7 as(Q2) 1% at fixedJL2, Q2+". 

i.e.: z actually vanishes as l/logQ2 in the fixed &12 domain. 

The behavior of structure functions in the large x region can 
be computed in leading order in a, from the infinite set of diagrams 

indicated in Fig. 17. The infinite set of horizontal gluon ladder 
graphs above the quark leg 
labeled k2 in the figure 
builds up the standard QCD 
corrections to Bjorken scaling 
and q2 dependence of the 
structure function moments. 
The main power law dependence 
at x-l is given by the mini- 
mal number of (vertical) 

gives 

[dk;;fN 

gluon exchanges required to 
stop the hadronic spectators. 
For the case of the nucleon 
the leading Fock state com- 

,111.11 ponent is the Iqqq> state, 
and two gluon exchanges with 

Fig. 17. Analysis of deep in- 
elastic scattering (virtual Comp- 
ton amplitude) to leading loga- 
rithmic order in perturbation 
theory. See Eq. (3.7). 

off-shell masses of order 
k$mO(($f+G2)/(l-x)) are 
required. These minimal hard 
gluon exchange diagrams give 
the analogue of TB in the 
form factor calculation. 

In addition, the remaining infinite set of vertical gluon ex- 

change diagrams (ordered, as usual, in momenta) leads to the evolu- 

tion of the hadro 
9 

ic wavefunction from the soft region X 
2 to the 

off-shell value k,. As in the form factor calculation, this leads 
y.(N) 

to a series of anomalous logarithms [as( J determined by the 

eigenvalues of the kernel for the Fock state. Combining factors, 

the leading behavior is given by 

-16- 

-2 
where m is the square of the invariant mass of the remaining spec- 
tators and gL and z are the struck constituent's light-cone coordi- 
nates in the hadronic wavefunction. Since z>x, and x is near 1, 

-2 
kz+ m 

-2 

AC2 N 1 x N 
k:+ m 

&iv2 
Q2 

. i.e. : k2-O(Q2) at fixed ,4L2. Thus 

; = 4cF 
ll-2/3nf log 

as (k2> 

as (Q2) 

(3.5) 

(3.6) 

=> 
cF 
7 as(Q2) 1% at fixedJL2, Q2+". 

i.e.: z actually vanishes as l/logQ2 in the fixed &12 domain. 

The behavior of structure functions in the large x region can 
be computed in leading order in a, from the infinite set of diagrams 

indicated in Fig. 17. The infinite set of horizontal gluon ladder 
graphs above the quark leg 
labeled k2 in the figure 
builds up the standard QCD 
corrections to Bjorken scaling 
and q2 dependence of the 
structure function moments. 
The main power law dependence 
at x-l is given by the mini- 
mal number of (vertical) 

gives 

[dk;;fN 

gluon exchanges required to 
stop the hadronic spectators. 
For the case of the nucleon 
the leading Fock state com- 

,111.11 ponent is the Iqqq> state, 
and two gluon exchanges with 

Fig. 17. Analysis of deep in- 
elastic scattering (virtual Comp- 
ton amplitude) to leading loga- 
rithmic order in perturbation 
theory. See Eq. (3.7). 

off-shell masses of order 
k$mO(($f+G2)/(l-x)) are 
required. These minimal hard 
gluon exchange diagrams give 
the analogue of TB in the 
form factor calculation. 

In addition, the remaining infinite set of vertical gluon ex- 

change diagrams (ordered, as usual, in momenta) leads to the evolu- 

tion of the hadro 
9 

ic wavefunction from the soft region X 
2 to the 

off-shell value k,. As in the form factor calculation, this leads 
y.(N) 

to a series of anomalous logarithms [as( J determined by the 

eigenvalues of the kernel for the Fock state. Combining factors, 

the leading behavior is given by 

-15- 

-Y. (NJ 2 
Fl(Q2> N (log Q2/A2) ' 

F2 (Q2) w M.m(Q2>_ F,(Q2) 

Q2 

(2.27) 

(2.28) 

The calculation of the nucieon anomalous dimensions Yj(N) is in 
progress. 15 These results agree with the dimensional counting pre- 
dictions and verify that the empirical CM-GE-l/Q4 scaling 12aws are 
consistent with quantum chromodynamics, modulo over-all 1ogQ 
corrections. 

3. The Inclusive-Exclusive Connection 

The above predictions for the form of the asymptotic form factor 
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tions to Bjorken scaling of hadronic structure functions appear to 
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which fall faster than any power! 30 

In fact, this "derivation" is incorrect in the fixedUM2, high 
Q2 domain because it ignores the fact that the struck hadronic con- 

stituent is far off-shell. In general the constituent mass that sets 

the lower limit in the c integration is given by 
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Exclusive-Inclusive Duality Valid
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F&,Q2) N c(tj(1-x)3+^i(Q23& cr4(k2) 
s x 

(3.7) 

(N) where the Yj are the leading anomalous dimension for the 3-quark 
nucleon wavefunction. Correction terms of higher power in (l-x) 
a_d crs(Q2) or as(<) are neglected. Notice that at fixed dU2, 
5 +O and we obtain a perfect exclusive-inclusive connection with 
the corresponding form factor claculation Eq. (2.7),-i-n agreement 
with the Drell-Yan-West relation. 

Equation (3.7) is consistent with the standard evolution 
equations for QCD structure functions and moments and other resuits 
derived from the operator product expansion.31p32 In the large x 
domain, however, the "initial" or "starting" structure function is 
no longer unknown but is directly determined from QCD perturbation 
theory and the wavefunction evolution equations at short distances. 
In a sense the most critical prediction from QCD is the nominal power 
law (l-~)~ since the integer 3 reflects the existence of a 3 quark 
Fock state as well as nearly scale-invariant QCD quark-quark inter- 
actions within the nucleon. 
z(Q2,g> and a,(g) in Eq. 

The logarithmic dependence from 
(3.7) yield the radiative corrections to 

the main dynamical dependence of the structure function. The pre- 
dicted form for the~'structure function may prove useful for fits to 
data, at least for x> 0.5. 

Q2 
In practice, the expected values of y are not large (e.g., for 

=lOO GeV2, k$= 1 GeV2, and A2=1/3 GeV2, 721) so the observed 
(l-x) power should be typically less than one unit larger than the 
valence power. The direct measurement of the leading power behavior 
of the valence state structure function requires the determination 
of the structure function at fixed JL2 over a large range of Q2. 

It should be noted that the form of Eq. (3.7) complicates the 

\ empirical analysis of moments at large N. In general 

l- AM2/Q2 

utLN(Q2) = 
J 

dx xN-' F,fx,Q*) 

0 

yN 
= (3.8) 

(The elastic contribution gives a power-law correction to Bjorken 
scaling.) At large N, only large x is important and 
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• Higher-twist subprocess enhanced: 1
(1−x)p

• Exclusive-Inclusive Duality

• Intrinsic heavy quarks at large x

• Utilize maximal energy of beam:
e.g., forward Higgs production

Why is large x Important?

• Sensitive to details of hadronic structure
valence, sea quark, and gluon distributions

• Detailed predictions from PQCD and AdS/CFT

• Helicity Retention & Spectator Counting
Rules

• DGLAP must be modified:
quenched at x→ 1
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Conformal symmetry: 
Template for QCD

• Initial approximation to PQCD; correct for non-
zero beta function

• Commensurate scale relations: relate observables 
at corresponding scales

• Infrared fixed-point for αs

• Effective Charges: analytic at quark mass 
thresholds

• Eigensolutions of Evolution Equations



• Light Front Wavefunctions:

Conformal 
Behavior:

identification ∆n → ∆n,! = n + 2δn + " in (15)

ψn/h($k⊥) → (k⊥)!

[
1

$k2
⊥

]n+δn+!−1

. (21)

Since O(d + 1, 1) the isometry group of AdSd+1 in d + 1 dimensions, acts as the

conformal group SO(2, d) in d-dimensional Minkowski space [30], it is natural to ask

if a correspondence can be established between a string moving in AdS space and

the QCD Fock-states with orbital angular momentum. According to the AdS/CFT

duality, we would expect that all the states of the hadronic expansion in a complete

Fock-basis spanning all the Hilbert space of the boundary theory are matched with

the string degrees of freedom in a one-to-one correspondence. We know from string

theory that the correspondence could not be established for spin greater than two, and

a Fock-state can have high orbital angular momentum. However, the QCD eigenstate

itself has no large spin, since the Jz component of each Fock-state is identical to that

of the hadron itself. If the sum of orbital components lzi is large, it is compensated by

the sum of the constituents’ spin sz
i for each of the n − 1 orbital angular momentum

states corresponding to a Fock-state with n partons.

From (7) or (18) it is clear that only if the compact space X has dimensions of

order R, would the product λR be independent of the ’t Hooft coupling. The KK

states should also be protected from quantum or string effects which potentially can

give contributions of the order of the string scale to ∆. As an example, for a string that

lives on M4×K, the product of Minkowski spacetime and a six-dimensional compact

space K, excited KK states are non-chiral [31]. Consequently, no mechanism can

in this case prevent the excited eigenmodes from acquiring a very large mass from

invariant mass terms at tree level in the Lagrangian. The non-chiral states acquire a

mass given by the highest scale available, λ ∼ 1/
√

α′, and decouple from the theory

according to the survival hypothesis [32], leaving effectively the massless modes. If

(λR)2 ∼ (gsNC)1/2, we would expect from (7) or (18) the dimension of an excited

KK state to grow as ∆ ∼ (gsNC)1/4 at large ’t Hooft coupling. In the case of the

supersymmetric Yang-Mills correspondence with Type IIB strings on AdS5 × S5 [3],

all Kaluza-Klein excited states transform in short supergravity multiplets and the

radius of curvature of S5 is also R. The associated dimensions are protected by the

supersymmetry algebra [8].

12

The basic constituents in QCD appear from the light-front quantization of the

excitations of the dynamical fields, expanded in terms of creation and annihilation

operators on the transverse plane with coordinates x− = z − ct and !x⊥ at τ =

z + ct = 0. The expansion of bound state hadronic systems in terms of Fock states

provides an exact representation of the local matrix elements used for calculating form

factors, distribution amplitudes, and generalized parton distributions [24]. In terms

of the hadron four-momentum P = (P+, P−, !P⊥) with P± = P 0 ±P 3, the light-front

frame independent Hamiltonian for a hadronic composite system HQCD
LC = PµP µ =

P−P+− !P 2
⊥, has eigenvalues given in terms of the eigenmass M squared corresponding

to the mass spectrum of the color-singlet states in QCD, HQCD
LC |Ψh〉 = M2

h |Ψh〉. The

hadron state |Ψh〉 is expanded in a Fock-state complete basis of non-interacting n-

particle states |n〉 with an infinite number of components

∣∣∣Ψh(P
+, !P⊥)

〉
=

∑
n,λi

∫
[dxi d2!k⊥i] ψn/h(xi,!k⊥i, λi) |n : xiP

+, xi
!P⊥ + !k⊥i, λi〉, (9)

where the coefficients of the light-front Fock expansion

ψn/h(xi,!k⊥i, λi) =
〈
n : xi,!k⊥i, λi|ψh

〉
, (10)

depend only on the relative partonic coordinates, the longitudinal momentum frac-

tion xi = k+
i /P+,

∑n
i=1 xi = 1, the relative transverse momentum !k⊥i,

∑n
i=1

!k⊥i = !0,

and λi, the projection of the constituents’ spin along the z direction. The amplitudes

ψn/h represent the probability amplitudes to find on-mass-shell constituents i with

momentum xiP+ and xi
!P⊥ + !k⊥i and spin projection λi in the hadron h. The mea-

sure of the constituents’ phase-space momentum integration [dxi d2!k⊥i] depends on

the normalization chosen. The complete basis of Fock-states |n〉 is constructed by

applying free-field creation operators to the vacuum state |0〉 which has no particle

content, P+|0〉 = 0, !P⊥|0〉 = 0. Since all the quanta have positive k+, the vacuum

state is unique and equal to the nonperturbative vacuum. A one-particle state is

defined by |q〉 =
√

2q+ a†(q)|0〉 so that its normalization has the Lorentz invariant

form 〈q|q′〉 = 2q+ (2π)3 δ(q+ − q′+) δ(2)(!q⊥ − !q⊥′). The measure of the phase space

integration is defined by

[dxi d2!k⊥i] = (16π3) δ


1 −

n∑
j=1

xj


 δ(2)

(
n∑

"=1

!k⊥"

)
n∏

i=1

dxi

xi

d2!k⊥i

16π3
, (11)

8

logical success of dimensional counting rules suggest indeed that the effect of the

anomalous dimensions is small. We thus write for the hard component of the light-

front wavefunction

ψn/h(xi,"k⊥i, λi, lzi) ∼ (gs NC)
1
2 (n−1)

√N C

n−1∏
i=1

(k±
i⊥)|lzi|


 Λo

M2 − ∑
i

!k2
⊥i

+m2
i

xi
+ Λ2

o




n+|lz|−1

,

(22)

where Λo represents the basic QCD mass scale and the normalization factor (NC)−1/2

depends on the color structure of each Fock state. For example for a valence meson

state NC = NC , for a valence baryon state NC = NC !, and for the lowest component

glue state NC = N2
C . The form (22) is compatible with the scaling properties predicted

by the AdS/CFT correspondence (21) including orbital angular momentum [36].

Fixed-angle large transverse momentum exclusive collision processes in QCD take

place in the large conformal region of AdS space. Let us review first the results for

hard meson scattering in a theory with gauge symmetry SU(NC) for large NC [37].

We use the ’t Hooft double-line representation [1] of Feynman diagrams where a quark

propagator is represented by a single-index line and a gluon propagator by two-index

lines. To obtain the 1/NC expansion for a meson form factor F , we note that there

is a factor of NC from a closed color quark loop where the photon is attached and

a normalization factor of 1/
√

NC for each meson wave function and thus F ∝ N0
C ,

independent of NC as it should.

To compute the meson-meson scattering amplitude M in the large NC limit, we

include a factor of NC from a closed color quark loop from quark interchange and a

factor of 1/
√

NC for the normalization of each meson wave function; thus MQIM ∝
1/NC. The counting rule is not changed at fixed g2

QCD NC by any number of ladder

gluon exchanges between quarks within the same meson, as would result from the

iteration of the equation of motion of the meson wavefunction. The evaluation of

planar multiple gluon exchange diagrams is also simple. In the case of two-gluon

exchange in meson-meson scattering, the index color-counting of the gluon exchange

in terms of qq pairs gives an additional factor NC relative to the quark interchange

diagram from the additional quark color loop, but each vertex has a factor 1/
√

NC

and thus M2g ∝ 1/N2
C . The 1/N2

C dependence is not modified by additional exchange

of gluons, since each new gluon introduces two extra vertices and one additional closed

14

Model Form from PQCD 
or AdS/CFT :
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Key Quantity of Nuclear and 
Hadron Physics

Proton-Proton 
Scattering



 
Trento ECT* 

5-13-05
New Perspectives AdS/CFT  Stan Brodsky,  SLAC89

   

[120]

Exclusive Processes in QCD and Light-Front Wavefunctions
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Exclusive Processes in QCD and Light-Front Wavefunctions
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Ideas for CarlFest

May 4, 2005

dσ
dt (pp→ pp) = F (t/s)

s9.7±0.5

Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).
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DIS 2005 
4-30-05

DIS Summary  Stan Brodsky,  SLAC

• Very difficult using Euclidean lattice

• Discretized light-cone quantization: Diagonalize 
light-cone Hamiltonian 

• Bethe-Salpeter Dyson-Schwinger Eqns

• Transverse lattice

• AdS/CFT guidance

Compute LFWFs from First 
Principles
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Beckenstein (S.A.)
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• Non-Perturbative Derivation of Dimensional 
Counting Rules (Strassler and Polchinski)

• Light-Front Wavefunctions: Confinement at 
Long Distances and Conformal Behavior at short 
distances (de Teramond and Sjb)

• Power-law fall-off  at large transverse momentum, 
x --> 1

• Hadron Spectra, Regge Trajectories

AdS/CFT and QCD
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AdS/CFT
• Use mapping of SO(4,2) to AdS5

• Scale Transformations represented by 
wavefunction Ψ(r) in 5th dimension

• Holographic model: Confinement at large 
distances and conformal symmetry at short 
distances

• Match solutions at large r to conformal 
dimension of hadron wavefunction at short 
distances

• Truncated space simulates “bag” boundary 
conditions

r =
Λ2

QCD
z

x2
µ → λ2x2

µ ≡ r → r
λ ≡ z → λz

Confinement:

0 < z < z0 = 1
ΛQCD

, r > r0 = ΛQCD

ψ(z0) = ψ(r0) = 0

r =
Λ2

QCD
z

x2
µ → λ2x2

µ ≡ r → r
λ ≡ z → λz

Confinement:

0 < z < z0 = 1
ΛQCD

, r > r0 = ΛQCD

ψ(z0) = ψ(r0) = 0

r =
Λ2

QCD
z

x2
µ → λ2x2

µ ≡ r → r
λ ≡ z → λz

Confinement:

ψ(r)→ r−∆ at large r, small z

0 < z < z0 = 1
ΛQCD

, r > r0 = ΛQCD

ψ(z0) = ψ(r0) = 0

r = R2

z

x2
µ → λ2x2

µ ≡ r → r
λ ≡ z → λz

Confinement:

ψ(r)→ r−∆ at large r, small z

0 < z < z0 = 1
ΛQCD

, r > r0 = ΛQCDR2

ψ(z0) = ψ(r0) = 0

r = R2

z

x2
µ → λ2x2

µ ≡ r → r
λ ≡ z → λz

Confinement:

ψ(r)→ r−∆ at large r, small z

0 < z < z0 = 1
ΛQCD

, r > r0 = ΛQCDR2

ψ(z0) = ψ(r0) = 0
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∆ ∼ (gsNC)
1
4 at large NC . The interpolating operators O, 〈P |O|0〉 $= 0, which couple to the

color-singlet hadrons at the boundary can be constructed from gauge-invariant products

of local quark and gluon fields taken at the same point in four-dimensional spacetime.

In contrast with the D3/D7 construction [11], we introduce quarks in the fundamental

representation at the AdS boundary, and follow their wavefunctions as they propagate into

the bulk. The endpoints of the open strings of the quarks of a given hadron then converge

to a point in the limit r → ∞.

As a first application of our procedure, consider the twist -dimension minus spin- two glue-

ball interpolating operators O4+L = FD{!1 . . .D!m}F , written in terms of the symmetrized

product of covariant derivatives D. The operator O4+L has total internal spacetime or-

bital momentum, L =
∑m

i=1 !i and conformal dimension ∆ = 4 + L. We shall match the

large r asymptotic behavior of each string mode in the bulk to the corresponding conformal

dimension of the boundary operators of each hadronic state while maintaining conformal

invariance [15]. In the conformal limit, an L-quantum, which is identified with a quan-

tum fluctuation about the AdS geometry, corresponds to an effective five-dimensional mass

µ in the bulk side. The allowed values of µ are uniquely determined by requiring that

asymptotically the dimensions become spaced by integers, according to the spectral relation

(µR)2 = ∆(∆− 4). For large spacetime angular momentum L, we recover the string theory

results for the spectrum of oscillatory exited states µ ( L/R. The physical string modes are

plane waves along the Poincaré coordinates with four-momentum Pµ and hadronic invariant

mass states given by PµP µ = M2. The four-dimensional mass spectrum ML then follows

when we impose the truncated space boundary condition Φ(x, zo) = 0 on the solutions of

the AdS wave equation with effective mass µ:

[
z2 ∂2

z − (d − 1)z ∂z + z2 M2 − (µR)2
]
f(z) = 0, (2)

where Φ(x, z) = e−iP ·xf(z). The normalizable modes are

Φα,k(x, z) = Cα,k e−iP ·xz2Jα (zβα,kΛQCD) , (3)

with Cα,k =
√

2 ΛQCD/Jα+1(βα,k)R
3
2 , α = 2 + L and ∆ = 4 + L for d = 4. For small-z, Φ

scales as z−∆, where the scaling dimension ∆ of the string mode has the same dimension of

the interpolating operator which creates a hadron. The four-dimensional mass spectrum is

4

• Light-Front Wavefunctions can be determined by 
matching functional dependence in fifth 
dimension to scaling in impact space.

•
• Relative orbital angular momentum

• High transverse momentum behavior matches 
PQCD LFWF:  Belitsky, Ji,Yuan

AdS/CFT
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r0 |

Truncated AdS_5 space 

r0 = !QCDR
2

Match fall-off at large r to 
Conformal Dimension 

of State at short distances
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FIG. 1: Light meson orbital states for ΛQCD = 0.263 GeV. Results for the vector mesons are shown

in (a) and for the pseudoscalar mesons in (b). The dashed line has slope 1.16 GeV2 and is drawn

for comparison.
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FIG. 2: Predictions for the light baryon orbital spectrum for ΛQCD = 0.22 GeV. The lower curves

corresponds to baryon states dual to spin-1
2 modes in the bulk and the upper to states dual to

spin-3
2 modes.

8

AdS/CFT 
Baryon 

Spectroscopy
One Parameter

G. F. de Teramond and S. J. Brodsky,

arXiv:hep-th/0501022.

!QCD = 0.22 GeV
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8

AdS/CFT Meson 
Spectroscopy

G. F. de Teramond and S. J. Brodsky, “The hadronic

spectrum of a holographic dual of QCD,” arXiv:hep-

th/0501022.
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• Ratio of proton to Delta trajectories= ratio of 
zeroes of Bessel functions.

• Only one scale ΛQCD determines hadron 
spectrum (slightly different for mesons and 
baryons)

• Only quark-antiquark, qqq, and g g hadrons 
appear at classical level

• Covariant version of bag model: 
confinement+conformal symmetry

Features of 
HolographicModel



AdS/CFT
• Light-Front Wavefunctions can be determined by 

matching functional dependence in fifth 
dimension to scaling in impact space.

• Relative orbital angular momentum

• High transverse momentum behavior matches 
PQCD LFWF:  Belitsky, Ji,Yuan

∆ ∼ (gsNC)
1
4 at large NC . The interpolating operators O, 〈P |O|0〉 $= 0, which couple to the

color-singlet hadrons at the boundary can be constructed from gauge-invariant products

of local quark and gluon fields taken at the same point in four-dimensional spacetime.

In contrast with the D3/D7 construction [11], we introduce quarks in the fundamental

representation at the AdS boundary, and follow their wavefunctions as they propagate into

the bulk. The endpoints of the open strings of the quarks of a given hadron then converge

to a point in the limit r → ∞.

As a first application of our procedure, consider the twist -dimension minus spin- two glue-

ball interpolating operators O4+L = FD{!1 . . .D!m}F , written in terms of the symmetrized

product of covariant derivatives D. The operator O4+L has total internal spacetime or-

bital momentum, L =
∑m

i=1 !i and conformal dimension ∆ = 4 + L. We shall match the

large r asymptotic behavior of each string mode in the bulk to the corresponding conformal

dimension of the boundary operators of each hadronic state while maintaining conformal

invariance [15]. In the conformal limit, an L-quantum, which is identified with a quan-

tum fluctuation about the AdS geometry, corresponds to an effective five-dimensional mass

µ in the bulk side. The allowed values of µ are uniquely determined by requiring that

asymptotically the dimensions become spaced by integers, according to the spectral relation

(µR)2 = ∆(∆− 4). For large spacetime angular momentum L, we recover the string theory

results for the spectrum of oscillatory exited states µ ( L/R. The physical string modes are

plane waves along the Poincaré coordinates with four-momentum Pµ and hadronic invariant

mass states given by PµP µ = M2. The four-dimensional mass spectrum ML then follows

when we impose the truncated space boundary condition Φ(x, zo) = 0 on the solutions of

the AdS wave equation with effective mass µ:

[
z2 ∂2

z − (d − 1)z ∂z + z2 M2 − (µR)2
]
f(z) = 0, (2)

where Φ(x, z) = e−iP ·xf(z). The normalizable modes are

Φα,k(x, z) = Cα,k e−iP ·xz2Jα (zβα,kΛQCD) , (3)

with Cα,k =
√

2 ΛQCD/Jα+1(βα,k)R
3
2 , α = 2 + L and ∆ = 4 + L for d = 4. For small-z, Φ

scales as z−∆, where the scaling dimension ∆ of the string mode has the same dimension of

the interpolating operator which creates a hadron. The four-dimensional mass spectrum is

4
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function

ψn/h(xi,"k⊥i, λi, lzi) ∼
(gs NC)

1
2(n−1)

√NC

×
n−1∏
i=1

(k±i⊥)|lzi|

 ΛQCD

M2 −∑
i
"k2⊥i+m2

i
xi

+ Λ2
QCD


n+|lz|−1

where ΛQCD represents the basic QCD mass
scale and the normalization factor (NC)−1/2

depends on the color structure of each Fock
state. For example for a valence meson state
NC = NC, for a valence baryon state NC =

NC!, and for the lowest component glue state
NC = N2

C.

The form is compatible with the scaling prop-
erties predicted by the AdS/CFT correspon-
dence including orbital angular momentum.

de Teramond, SJB
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Holographic Model for Light-Front Wave
Functions

SJB and GdT

02/21/2005

Hadron form factors can be expressed as a sum of overlap integrals of light-front
wave functions:

F (q2) =
∑

n

∫ [
dxi

] [
d2!k⊥i

] ∑
j

ejψ
∗
n(xi,!k

′
⊥i, λi)ψn(xi,!k⊥i, λi), (1)

where the variables of the light-cone Fock components in the final-state are given by

!k′⊥i = !k⊥i + (1− xi) !q⊥, (2)

for a struck constituent quark and

!k′⊥i = !k⊥i − xi !q⊥, (3)

for each spectator. The momentum transfer is q2 = −!q 2
⊥ = −2P · q = −Q2. The

measure of the phase-space integration is

[
dxi

]
=

n∏
i=1

dxi√
xi

δ

(
1−

n∑
j=1

xj

)
, (4)

[
d2!k⊥i

]
= (16π3)

n∏
i=1

d2!k⊥i

16π3
δ(2)

(
n∑

!=1

!k⊥!

)
. (5)

We define the total position coordinate of a hadron or its transverse center of
momentum !R⊥ in terms of the energy momentum tensor T µν

!R⊥ =
1

P+

∫
dx−

∫
d2!r⊥T++!r⊥. (6)

In terms of partonic variables:

xi!r⊥i = !R⊥ +!b⊥i, (7)

where the variables !r⊥i are the physical coordinates and!b⊥ are the frame-independent
internal coordinates. Thus, !R⊥ =

∑
i xi!r⊥i and

∑
i
!b⊥i = 0.

Impact Space 
Representation of 

LFWFs
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Comparing (21) and (28) for the lowest meson state in the forward limit, Q = 0,

and identifying the variables z = b =
√

!b2
⊥ we find

R5 Φ2(b)

b6
=

1

4π2

∫ 1

0

dx√
x(1− x)

∣∣ψ(x, b)|2. (31)

Normalizable string modes representing mesons states in AdS follow from the
solution of [8][

z2 ∂2
z − (d− 1)z ∂z + z2 M2 + (µR)2 + d− 1

]
f(z) = 0, (32)

where Φ(x, z) = e−iP ·xf(z), with PµP µ = M2. We impose truncated space boundary
conditions Φ(x, zo) = 0. The normalizable modes are

Φα,k(x, z) = Cα,k e−iP ·xz2Jα (zβα,kΛQCD) , (33)

with α = 1 + L (d = 4), M = βΛQCD. Thus

J2
α (bM)

b2
= B

∫ 1

0

dx√
x(1− x)

∣∣ψ(x, b)|2, (34)

with B a constant. If we impose the condition:

ψ
(
x, |!b⊥| = bo

)
= 0, (35)

then

ψ(x, b) = γ(x)χ(b), (36)

To first approximation we determine γ(x) from the x → 0 and x → 1 limits, thus
γ(x) = x(1− x). We obtain for ψ(x, b)

ψ(x, b) = Cx(1− x)
Jα (bM)

b
, (37)

The two-parton state including orbital angular momentum ) and radial modes is:

ψn,",k(x, b) = Bn,",k x(1− x)
Jn+"−1 (bβn−1,kΛQCD)

b
, (38)

In Figs. 1, 2 and 3 we show the model predictions for the two-parton wavefunction
ψn(x,!b⊥), n = 2, as a function of x and |!b⊥| for ) = 0, k = 1; ) = 1, k = 1 and
) = 0, k = 2 respectively. The normalization in the figures is arbitrary.

...........................

7
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Figure 1: Ground state light-front wavefunction in impact space ψ(x, b) for a two-
parton state in a holographic QCD model for n = 2, " = 0, k = 1.
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Figure 2: First orbital exited state light-front wavefunction in impact space ψ(x, b)
for a two-parton state in a holographic QCD model for n = 2, " = 1, k = 1.
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Figure 1: Ground state light-front wavefunction in impact space ψ(x, b) for a two-
parton state in a holographic QCD model for n = 2, " = 0, k = 1.
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Figure 2: First orbital exited state light-front wavefunction in impact space ψ(x, b)
for a two-parton state in a holographic QCD model for n = 2, " = 1, k = 1.
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!(x,b) (n= 2,! = 0,k = 2)
GdT & Sjb 
(preliminary)
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Figure 3: First radial exited state light-front wavefunction in impact space ψ(x, b) for
a two-parton state in a holographic QCD model for n = 2, " = 0, k = 2.

6
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Two approaches to evaluating LFWFs at Short
Distances

ψ(xi,"k⊥i, λi)

k2⊥ >> Λ2
QCD and/or xi → 1

• Use PQCD (minimally connected tree graphs)

• AdS/CFT (duality between string theory
and conformal field theory)

In practice: QCD: Approximately Conformal
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Use PQCD to analyze LFWF at high x or
large k2⊥:

Central Behavior:

ψn(xi, k⊥i, λi) ∼ [
ΛQCD

M2
n

](n−1)

M2
n ≡

∑n
i=1(

k2⊥+m2

x )i

Modified by Orbital angular momentum fac-
tors #kLz⊥
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0.1 Two parton example

For a two parton state:

F (Q2) =

∫
d2!b⊥
16π3

∫
dx√

x(1− x)
exp

(
−i!b⊥ · !q⊥x

)∣∣∣ψ(x,!b⊥)
∣∣∣2 (15)

We use the integral representation of the Bessel function

Jo(η) =
1

2π

∫ π

−π

e−iηcosαdα, (16)

to integrate over angles (d2!b⊥ = 2|!b⊥|d|!b⊥|dφ = db2 dφ). We find:

F (Q2) =

∫ ∞

0

b db

4π2

∫ 1

0

dx√
x(1− x)

Jo (bQx)
∣∣ψ(x, b)

∣∣2, (17)

where b =
√

!b⊥ represents the interquark separation. Due to confinement, the integral
(15) is effectively cut at the value corresponding to the maximal interquark separation
which we label bo.

0.2 Truncated Space Model

In AdS space the form factor is the overlap integral of the normalizable string modes
dual to the incoming and outgoing hadron ΦI and ΦF and the non-normalizable mode
J , dual to the external source:

F (Q2)I→F = R3+2σ

∫ ∞

0

dz

z3+2σ
e(3+2σ)A(z)ΦF (z) J(Q, z) ΦI(z) (18)

" R3+2σ

∫ zo

0

dz

z3+2σ
ΦF (z) J(Q, z) ΦI(z),

where σ represents the hadron spin. The non-normalizable mode J has the limiting
value 1 at zero momentum transfer to recover hadron normalization, F (0) = 1, and
has as boundary limit the external current. Thus

lim
Q→0

J(Q, z) = lim
z→0

J(Q, z) = 1. (19)

Consider a specific AdS mode corresponding to an n partonic state Φ(n) which
behaves as Φ(n) ∼ z∆n in the boundary limit z → 0. From (18):

F (Q2)→
[

1

Q2

]τ−1

, (20)

3

0.1 Two parton example

For a two parton state:

F (Q2) =

∫
d2!b⊥
16π3

∫
dx√

x(1− x)
exp

(
−i!b⊥ · !q⊥x

)∣∣∣ψ(x,!b⊥)
∣∣∣2 (15)

We use the integral representation of the Bessel function

Jo(η) =
1

2π

∫ π

−π

e−iηcosαdα, (16)

to integrate over angles (d2!b⊥ = 2|!b⊥|d|!b⊥|dφ = db2 dφ). We find:

F (Q2) =

∫ ∞

0

b db

4π2

∫ 1

0

dx√
x(1− x)

Jo (bQx)
∣∣ψ(x, b)

∣∣2, (17)

where b =
√

!b⊥ represents the interquark separation. Due to confinement, the integral
(15) is effectively cut at the value corresponding to the maximal interquark separation
which we label bo.

0.2 Truncated Space Model

In AdS space the form factor is the overlap integral of the normalizable string modes
dual to the incoming and outgoing hadron ΦI and ΦF and the non-normalizable mode
J , dual to the external source:

F (Q2)I→F = R3+2σ

∫ ∞

0

dz

z3+2σ
e(3+2σ)A(z)ΦF (z) J(Q, z) ΦI(z) (18)

" R3+2σ

∫ zo

0

dz

z3+2σ
ΦF (z) J(Q, z) ΦI(z),

where σ represents the hadron spin. The non-normalizable mode J has the limiting
value 1 at zero momentum transfer to recover hadron normalization, F (0) = 1, and
has as boundary limit the external current. Thus

lim
Q→0

J(Q, z) = lim
z→0

J(Q, z) = 1. (19)

Consider a specific AdS mode corresponding to an n partonic state Φ(n) which
behaves as Φ(n) ∼ z∆n in the boundary limit z → 0. From (18):

F (Q2)→
[

1

Q2

]τ−1

, (20)

3where τ = ∆n − σn = n, σn =
∑n

i=1 σi.
Comparing (15) and (18) for the lowest meson state in the forward limit, Q = 0,

and identifying the variables z = b =
√

#b2
⊥:

R5 Φ2(b)

b6
=

1

4π2

∫ 1

0

dx√
x(1− x)

∣∣ψ(x, b)|2. (21)

Normalizable string modes representing mesons states in AdS follows from the
solution of (dT and B PRL):[

z2 ∂2
z − (d− 1)z ∂z + z2 M2 + (µR)2 + d− 1

]
f(z) = 0, (22)

where Φ(x, z) = e−iP ·xf(z), with PµP µ = M2. We impose truncated space boundary
conditions Φ(x, zo) = 0. The normalizable modes are

Φα,k(x, z) = Cα,k e−iP ·xz2Jα (zβα,kΛQCD) , (23)

with α = 1 + L (d = 4), M = βΛQCD. Thus

J2
α (bM)

b2
= B

∫ 1

0

dx√
x(1− x)

∣∣ψ(x, b)|2, (24)

with B a constant.
If we impose the condition:

ψ
(
x, |#b⊥| = bo

)
= 0, (25)

then
ψ(x, b) = γ(x)χ(b), (26)

where γ(x) is determined from the conformal invariance of the theory. In the confor-
mal limit: γ(x) = x(1− x). We obtain for ψ(x, b)

ψ(x, b) = Cx(1− x)
Jα (bM)

b
, (27)

The two-parton state including orbital angular momentum + and radial modes is:

ψn,",k(x, b) = Bn,",k x(1− x)
Jn+"−1 (bβn−1,kΛQCD)

b
, (28)

In Figs. ??, ?? and ?? we show the model predictions for the two-parton wave-
function ψn(x,#b⊥), n = 2, as a function of x and |#b⊥| for + = 0, k = 1; + = 1, k = 1
and + = 0, k = 2 respectively. The normalization in the figures is arbitrary.

4
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• Measure Light-Front Wavefunction of Pion

• Two-gluon Exchange

• Minimal momentum transfer to nucleus

• Nucleus left Intact

Diffractive Dissociation of 
Pion
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Fluctuation of a Pion to a 
Compact Color Dipole State

Color-Transparent Fock State For High Transverse 
Momentum Di-Jets

Same Fock State 
Determines Weak 

Decay
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Fluctuation of a Pion to a 
Compact Color Dipole State

Small Size Pion Can 
Interact Coherently on 

Each Nucleon of 
Nucleus

Diffractive Dijet Cross Section Color Transparent!

M(!A→ JetJetA
′)=A

1
M(!N→ JetJetN

′)FA(t)
d"/dt(!A→ JetJetA

′) =
A2d"/dt(!N→ JetJetN

′)|FA(t)|2
" # A

2

R2
A

∼ A
4/3



Color Transparency 

E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1
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E791 Collaborat ion, E. A it ala et al., Phys. Rev. Let t . 86, 4773 (2001)

A -Dependence result s: σ ∝ Aα

k t range (GeV / c) α α (CT )

1.25 < kt < 1.5 1.64 + 0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α ( I ncoh.) = 0.70 ± 0.1 Conventional Glauber 
Theory Ruled Out !

FermiLab E791 
Ashery et al

Verification of QCD 
Color Transparency 
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!A→ JetJetA
′

!"
qq̄(x,!k⊥)

D. Ashery, Tel Aviv University

THE qq̄ MOM ENTUM WAVE FUNCT ION
M EASURED BY DI -JETS

Fermilab E791 Collaborat ion, PRL 86, 4768 (2001)

1.5GeV/c ≤ kt ≤ 2.5GeV/c; Q2 ∼ 16 (GeV/c)2 : φ2 > 0.9φ2
Asy

1.25GeV/c ≤ kt ≤ 1.5GeV/c; Q2 ∼ 8 (GeV/c)2 :

φ2 cont ains cont r ibut ions from CZ or ot her non-per t urbat ive wave funct ions

x

• E789 Fermilab Experiment 
Ashery et al

• 500 GeV pions collide on 
nuclei keeping it intact

• Measure momentum of two 
jets

• Study momentum distributions 
of pion LF wavefunction

Diffractive Dissociation of a 
Pion into Dijets
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D. Ashery, Tel Aviv University

THE qq̄ MOM ENTUM WAVE FUNCT ION
M EASURED BY DI -JETS

Fermilab E791 Collaborat ion, PRL 86, 4768 (2001)

1.5GeV/c ≤ kt ≤ 2.5GeV/c; Q2 ∼ 16 (GeV/c)2 : φ2 > 0.9φ2
Asy

1.25GeV/c ≤ kt ≤ 1.5GeV/c; Q2 ∼ 8 (GeV/c)2 :

φ2 cont ains cont r ibut ions from CZ or ot her non-per t urbat ive wave funct ions

Possible change of x 
shape at small kt 

x x
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D. Ashery, Tel Aviv University

THE kt DEPENDENCE OF DI -JETS Y IELD

dσ

dk2
t

∝
∣∣∣∣αs(k

2
t )G(x, k2

t )
∣∣∣∣2

∣∣∣∣∣∣∣
∂2

∂k2
t

ψ(u, kt)

∣∣∣∣∣∣∣
2

W it h ψ ∼ φ
k2t
, weak φ(k2

t ) and αs(k2
t ) dependences and G(x, k2

t ) ∼ k1/2
t : dσ

dkt
∼ k−6

t

For low kt:

Gaussian: ψ ∼ e−βk2t (Jakob and K rol l)

Coulomb: ψ(p) =
(

1
1+p2/p2a

)2
(Paul i)

D. Ashery, Tel Aviv University

THE kt DEPENDENCE OF DI -JETS Y IELD

dσ

dk2
t

∝
∣∣∣∣αs(k2

t )G(x, k2
t )

∣∣∣∣2
∣∣∣∣∣∣∣
∂2

∂k2
t

ψ(u, kt)
∣∣∣∣∣∣∣
2

W it h ψ ∼ φ
k2t
, weak φ(k2

t ) and αs(k2
t ) dependences and G(x, k2

t ) ∼ k1/2
t : dσ

dkt
∼ k−6

t

For low kt:

Gaussian: ψ ∼ e−βk2t (Jakob and K rol l)

Coulomb: ψ(p) =
(

1
1+p2/p2a

)2
(Paul i)

High kT dependence 
consistent with PQCD/

AdS/CFT



Diffractive Dissociation of 
Pion into Di-Jets

• Verify Color 
Transparency! 

• Pion Interacts 
coherently on each 
nucleon of nucleus !

• Pion Distribution 
similar to Asymptotic 
Form

• Scaling in transverse 
momentum consistent 
with PQCD

M ! A, " ! A
2

!(x,k⊥) " x(1− x)

Also:AdS/CFT
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Coulomb Dissociate Proton 
to Three Jets at HERA

Measure !qqq(xi,!k⊥i) valence wavefunction of proton



• Light Front Wavefunctions:

Conformal 
Behavior:

identification ∆n → ∆n,! = n + 2δn + " in (15)

ψn/h($k⊥) → (k⊥)!

[
1

$k2
⊥

]n+δn+!−1

. (21)

Since O(d + 1, 1) the isometry group of AdSd+1 in d + 1 dimensions, acts as the

conformal group SO(2, d) in d-dimensional Minkowski space [30], it is natural to ask

if a correspondence can be established between a string moving in AdS space and

the QCD Fock-states with orbital angular momentum. According to the AdS/CFT

duality, we would expect that all the states of the hadronic expansion in a complete

Fock-basis spanning all the Hilbert space of the boundary theory are matched with

the string degrees of freedom in a one-to-one correspondence. We know from string

theory that the correspondence could not be established for spin greater than two, and

a Fock-state can have high orbital angular momentum. However, the QCD eigenstate

itself has no large spin, since the Jz component of each Fock-state is identical to that

of the hadron itself. If the sum of orbital components lzi is large, it is compensated by

the sum of the constituents’ spin sz
i for each of the n − 1 orbital angular momentum

states corresponding to a Fock-state with n partons.

From (7) or (18) it is clear that only if the compact space X has dimensions of

order R, would the product λR be independent of the ’t Hooft coupling. The KK

states should also be protected from quantum or string effects which potentially can

give contributions of the order of the string scale to ∆. As an example, for a string that

lives on M4×K, the product of Minkowski spacetime and a six-dimensional compact

space K, excited KK states are non-chiral [31]. Consequently, no mechanism can

in this case prevent the excited eigenmodes from acquiring a very large mass from

invariant mass terms at tree level in the Lagrangian. The non-chiral states acquire a

mass given by the highest scale available, λ ∼ 1/
√

α′, and decouple from the theory

according to the survival hypothesis [32], leaving effectively the massless modes. If

(λR)2 ∼ (gsNC)1/2, we would expect from (7) or (18) the dimension of an excited

KK state to grow as ∆ ∼ (gsNC)1/4 at large ’t Hooft coupling. In the case of the

supersymmetric Yang-Mills correspondence with Type IIB strings on AdS5 × S5 [3],

all Kaluza-Klein excited states transform in short supergravity multiplets and the

radius of curvature of S5 is also R. The associated dimensions are protected by the

supersymmetry algebra [8].

12

The basic constituents in QCD appear from the light-front quantization of the

excitations of the dynamical fields, expanded in terms of creation and annihilation

operators on the transverse plane with coordinates x− = z − ct and !x⊥ at τ =

z + ct = 0. The expansion of bound state hadronic systems in terms of Fock states

provides an exact representation of the local matrix elements used for calculating form

factors, distribution amplitudes, and generalized parton distributions [24]. In terms

of the hadron four-momentum P = (P+, P−, !P⊥) with P± = P 0 ±P 3, the light-front

frame independent Hamiltonian for a hadronic composite system HQCD
LC = PµP µ =

P−P+− !P 2
⊥, has eigenvalues given in terms of the eigenmass M squared corresponding

to the mass spectrum of the color-singlet states in QCD, HQCD
LC |Ψh〉 = M2

h |Ψh〉. The

hadron state |Ψh〉 is expanded in a Fock-state complete basis of non-interacting n-

particle states |n〉 with an infinite number of components

∣∣∣Ψh(P
+, !P⊥)

〉
=

∑
n,λi

∫
[dxi d2!k⊥i] ψn/h(xi,!k⊥i, λi) |n : xiP

+, xi
!P⊥ + !k⊥i, λi〉, (9)

where the coefficients of the light-front Fock expansion

ψn/h(xi,!k⊥i, λi) =
〈
n : xi,!k⊥i, λi|ψh

〉
, (10)

depend only on the relative partonic coordinates, the longitudinal momentum frac-

tion xi = k+
i /P+,

∑n
i=1 xi = 1, the relative transverse momentum !k⊥i,

∑n
i=1

!k⊥i = !0,

and λi, the projection of the constituents’ spin along the z direction. The amplitudes

ψn/h represent the probability amplitudes to find on-mass-shell constituents i with

momentum xiP+ and xi
!P⊥ + !k⊥i and spin projection λi in the hadron h. The mea-

sure of the constituents’ phase-space momentum integration [dxi d2!k⊥i] depends on

the normalization chosen. The complete basis of Fock-states |n〉 is constructed by

applying free-field creation operators to the vacuum state |0〉 which has no particle

content, P+|0〉 = 0, !P⊥|0〉 = 0. Since all the quanta have positive k+, the vacuum

state is unique and equal to the nonperturbative vacuum. A one-particle state is

defined by |q〉 =
√

2q+ a†(q)|0〉 so that its normalization has the Lorentz invariant

form 〈q|q′〉 = 2q+ (2π)3 δ(q+ − q′+) δ(2)(!q⊥ − !q⊥′). The measure of the phase space

integration is defined by

[dxi d2!k⊥i] = (16π3) δ


1 −

n∑
j=1

xj


 δ(2)

(
n∑

"=1

!k⊥"

)
n∏

i=1

dxi

xi

d2!k⊥i

16π3
, (11)

8

logical success of dimensional counting rules suggest indeed that the effect of the

anomalous dimensions is small. We thus write for the hard component of the light-

front wavefunction

ψn/h(xi,"k⊥i, λi, lzi) ∼ (gs NC)
1
2 (n−1)

√N C

n−1∏
i=1

(k±
i⊥)|lzi|


 Λo

M2 − ∑
i

!k2
⊥i

+m2
i

xi
+ Λ2

o




n+|lz|−1

,

(22)

where Λo represents the basic QCD mass scale and the normalization factor (NC)−1/2

depends on the color structure of each Fock state. For example for a valence meson

state NC = NC , for a valence baryon state NC = NC !, and for the lowest component

glue state NC = N2
C . The form (22) is compatible with the scaling properties predicted

by the AdS/CFT correspondence (21) including orbital angular momentum [36].

Fixed-angle large transverse momentum exclusive collision processes in QCD take

place in the large conformal region of AdS space. Let us review first the results for

hard meson scattering in a theory with gauge symmetry SU(NC) for large NC [37].

We use the ’t Hooft double-line representation [1] of Feynman diagrams where a quark

propagator is represented by a single-index line and a gluon propagator by two-index

lines. To obtain the 1/NC expansion for a meson form factor F , we note that there

is a factor of NC from a closed color quark loop where the photon is attached and

a normalization factor of 1/
√

NC for each meson wave function and thus F ∝ N0
C ,

independent of NC as it should.

To compute the meson-meson scattering amplitude M in the large NC limit, we

include a factor of NC from a closed color quark loop from quark interchange and a

factor of 1/
√

NC for the normalization of each meson wave function; thus MQIM ∝
1/NC. The counting rule is not changed at fixed g2

QCD NC by any number of ladder

gluon exchanges between quarks within the same meson, as would result from the

iteration of the equation of motion of the meson wavefunction. The evaluation of

planar multiple gluon exchange diagrams is also simple. In the case of two-gluon

exchange in meson-meson scattering, the index color-counting of the gluon exchange

in terms of qq pairs gives an additional factor NC relative to the quark interchange

diagram from the additional quark color loop, but each vertex has a factor 1/
√

NC

and thus M2g ∝ 1/N2
C . The 1/N2

C dependence is not modified by additional exchange

of gluons, since each new gluon introduces two extra vertices and one additional closed

14

Model Form from PQCD 
or AdS/CFT :



Near-Conformal Behavior of 
LFWFs Lead to PQCD 

Scaling Laws
• Bjorken Scaling of  DIS

• Counting Rules of Structure Functions at large x

• Dimensional Counting Rules for Exclusive 
Processes and Form Factors

• Conformal Relations between Observables

• No Renormalization Scale Ambiguity
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Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Quarks travel freely within cavity as long as
separation z < z0 = 1

ΛQCD

LFWFs obey conformal symmetry producing
quark counting rules.
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The remarkable anomalies of 
proton-proton scattering 

• Double spin correlations

• Single spin correlations

• Color transparency
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Ideas for CarlFest

May 4, 2005

Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).

1

Ratio reaches 4:1 !
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dσ!↑
dt (pp → pp) at θCM = π/2

(1− x)3 at large x
dual to
t2F1(t) = const at large t

PQCD prediction:

F2(Q2)
F1(Q2)

→ Λ2
QCD ln2 Q2

Q2

Contribution from nonzero
orbital angular momentum Lz = ±1

Ji, Ma,Yuan
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[112]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

Strangeness Charmp Δ
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What causes the Krisch Effect?

Largest spin-spin correlation in hadron physics!

An outstanding problem confronting QCD

Two Models:

Carlson, Lipkin, SJB:

Complete analysis of spin correlations

Interference of QIM and
Landshoff “Pinch” (triple scattering)
contributions

de Teramond, SJB:

Peaks in RNN associated with
p∆, strangeness, charm thresholds

Predict significant strangeness production
σ(pp→ sX) ∼ 1 mb just above threshold

Predict significant charm production
σ(pp→ cX) ∼ 1 µb just above threshold
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Quark Interchange + 8-Quark Resonance

|uuduudcc̄ > Strange and Charm Octoquark!

M = 3 GeV, M = 5 GeV.

J = L = S = 1, B = 2

S. J. Brodsky and G. F. de Teramond, “Spin
Correlations, QCD Color Transparency And
Heavy Quark Thresholds In Proton Proton
Scattering,” Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange + 8-Quark Resonance

|uuduudcc̄ > Strange and Charm Octoquark!

M = 3 GeV, M = 5 GeV.

J = L = S = 1, B = 2
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[125]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

Test Color Transparency 

Ideas for CarlFest

May 4, 2005

dσ
dt (pA→ pp(A− 1))→ Z × dσ

dt (pp→ pp)
Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).
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A.H. Mueller, SJB
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[123]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return
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Color Transparency Ratio

J. L. S. Aclander et al.,
“Nuclear transparency in θCM = 900

quasielastic A(p,2p) reactions,”
Phys. Rev. C 70, 015208 (2004), [arXiv:nucl-
ex/0405025].

S. J. Brodsky and G. F. de Teramond, “Spin
Correlations, QCD Color Transparency And
Heavy Quark Thresholds In Proton Proton
Scattering,” Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange + 8-Quark Resonance
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Color Transparency fails 
when Ann is large 
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Eva 
Experiment  

BNL

Rapid Angular Variation!
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Origin of Nuclear 
Shadowing in Glauber  - 

Gribov Theory

Interaction on upstream nucleon diffractive
Interference of one-step and two-step processes

Phase i X i = - 1 produces destructive interference
No Flux reaches down stream nucleon
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p

Final State Interaction 
Produces Diffractive DIS 

Quark Rescattering 

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.
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2

. The ratios (Rexp − Rtheo)/Rtheo are shown.

ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.
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Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,
“Nuclear parton distribution functions
and their uncertainties,”
Phys. Rev. C 70, 044905 (2004)
[arXiv:hep-ph/0404093].
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Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF !
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Shadowing and Antishadowing in Lepton-Nucleus Scattering

• Shadowing: Destructive Interference
of Two-Step and One-Step Processes
Pomeron Exchange

• Antishadowing: Constructive Interference
of Two-Step and One-Step Processes!
Reggeon and Odderon Exchange

• Antishadowing is Not Universal!
Electromagnetic and weak currents:
different nuclear effects !
Potentially significant for NuTeV Anomaly}
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Estimate 20% effect on extraction of sin2 θW

for NuTeV

Need new experimental studies of
antishadowing in

• Parity-violating DIS

• Spin Dependent DIS

• Charged and Neutral Current DIS
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11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin asymmetries Sivers Effect

!Sp ·!q×!pq



Measure c(x) in Deep Inelastic 
Lepton-Proton Scattering

c

Hoyer, Peterson, SJB



Intrinsic Charm in Proton
|uudcc̄> Fluctuation in Proton

QCD: Probability
∼!2QCD
M2
Q

|e+e−!+!− > Fluctuation in Positronium

QED: Probability
∼(me!)4

M
4
!

Distribution peaks at equal rapidity (velocity)

Therefore heavy particles carry the largest mo-

mentum fractions

cc̄ in Color Octet

High x charm

In 
contrast:

OPE derivation - M.Polyakov et al.
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• EMC data: c(x, Q2) > 30×DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp→ J/ψX

• High xF pp→ J/ψJ/ψX

• High xF pp→ ΛcX

• High xF pp→ ΛbX

• High xF pp→ Ξ(ccd)X (SELEX)
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• IC Explains Anomalous α(xF ) not α(x2)
dependence of pA→ J/ψX

(Mueller, Gunion, Tang, SJB)

• Color Octet IC Explains A2/3 behavior at
high xF (NA3, Fermilab)
(Kopeliovitch, Schmidt, Soffer, SJB)

• IC Explains J/ψ → ρπ puzzle
(Karliner, SJB)

• IC leads to new effects in B decay
(Gardner, SJB)



159

J. J. Aubert et al. [European Muon Collaboration], “Pro-

duction Of Charmed Particles In 250-Gev Mu+ - Iron In-

teractions,” Nucl. Phys. B 213, 31 (1983).

Evidence 
for Intrinsic 

Charm

Measurement 
of Charm 
Structure  
Function 

1 %IC - Hoffmann, Moore



 
DIS 2005 
4-29-05

Hard Diffraction
 Stan Brodsky,  SLAC160

Diffractive Dissociation of 
Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks

Produce J/!, "c and other Charm Hadrons at High xF



161

p p→ p!cX

Diffractive Dissociation of Intrinsic Charm
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J/ψ nuclear dependence vrs rapidity, xAu, xF
PHENIX compared to lower energy measurements

Klein,Vogt, PRL 91:142301,2003 
Kopeliovich, NP A696:669,2001 

Data favors (weak) shadowing + (weak) 
absorption (a > 0.92)
With limited statistics difficult to disentangle 
nuclear effects
Will need another dAu run! (more pp data also)

Not universal versus X2 : shadowing is not 
the main story.

BUT does scale with xF ! - why?
(Initial-state gluon energy loss -which goes 

as x1~xF - expected to be weak at 
RHIC energy)

E866: PRL 84, 3256 (2000)
NA3: ZP C20, 101 (1983)
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Intrinsic Charm Mechanism 
for Double Diffraction

xJ/! = xc+ xc̄

Intrinsic cc̄ pair formed in color octet 8C in pro-

ton wavefunction

Collision produces color-singlet J/! through

color exchange

High xF !

Schmidt, 
Soffer, sjb RHIC Experiment

Large Color Dipole

p p→ J/! p p
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New Test  of  Intrinsic Charm

Doubly Diffractive DIS Reactions

γ∗p → ρ + J/ψ + p

γ∗p → ρ + D + Λc

Charm produced at high xF and small pT

in proton fragmentation region

V
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New Mechanism for Forward Higgs production

Kopeliovitch, Schmidt, Soffer, 
SJB

Doubly Diffractive
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decades of research, the basic mystery of the origin of nuclei still remains. How did nuclei emerge
from QCD? This is one of the key issues of modern-day studies of nuclei [Gu04a].

Alternatively, Nature provided in the atomic nucleus, with a size comparable to the range of
the QCD and nuclear forces, a perfect laboratory to study how the underlying QCD non-Abelian
degrees of freedom, such as its elusive color charge, manifest themselves. The idea is here to strike
a quark inside the nucleus with such velocity that one can uniquely witness how hadrons emerge,
as they must, from these speedy quarks (and the associated gluons) on their path through the
nuclear theater. Our present sketchy understanding of this process will be vastly improved with
the 12-GeV program at JLab.

The Emergence of Nuclei from QCD. Studies of scattering between two nucleons at low
energy demonstrate that their interactions can be described in part in terms of the exchange of
mesons. This insight is the basis for many successful models of nuclear structure. However, the
fundamental constituents of nuclei are quarks and gluons, whose interactions are described by
QCD. Both nucleons and mesons are composites of quarks, that can not exist in isolation due to
confinement. This leads to some of the most fundamental questions in modern nuclear physics:

• How do the nucleon-based models of nuclear physics with interacting nucleons and mesons
arise as an approximation to the quark-gluon picture of QCD?

• In probing ever-shorter distances within the nucleus, what is the role of the fundamental
constituents of QCD — quarks and gluons — in the description of nuclei?

• Does the nuclear environment modify the quark-gluon structure of nucleons and mesons?

The partonic structure of nuclei. Nucleons and mesons are the building blocks of
ordinary nuclear matter, but there is no guarantee that these building blocks have properties in
nuclei identical to those of the isolated hadrons. The neutron life time in nuclei is definitely changed!
In QCD, the properties of hadrons are strongly influenced by the induced sea of quark-antiquark
pairs and the gluons produced in the confining interactions. Recent Lattice QCD calculations
indeed verify that the probability of finding virtual quark-antiquark pairs in the QCD vacuum
decreases systematically when quarks are added. Hence, a hole or depletion in the QCD vacuum is
created, a picture qualitatively similar to the bag model. This is graphically illustrated in Fig. 17.

The question of whether a nucleon bound in the nuclear medium has different properties from
those of a free nucleon has been a long-standing issue in nuclear physics. It was first considered
seriously with the discovery of the nuclear EMC effect some twenty years ago, in which scattering
from quarks inside the nucleus was discovered to differ in non-trivial ways from the scattering
of quarks in a free nucleon. Existing measurements indicate little Q2 dependence, and an A
dependence in the magnitude, but not the overall form, of the structure function modification
in nuclei. The nature of the modifications in nuclei depends primarily on Bjorken-x; its most
prominent features are an enhancement in the region 0.1 < x < 0.3 and a depletion in the region
0.3 < x < 0.7. Despite a huge world-wide effort in experiment and theory, the EMC effect remains
a mystery. Explanations of it are hampered by the lack of a theory that can consistently account
for the nuclear dependence of the quark distributions over a large range of x. Further difficulties
arise from the lack of evidence for the surplus of antiquarks predicted to arise from pions being

24

Nuclear Chromodynamics

Hidden Color!
EMC and Anti-Shadowing

Rigorous 
Prediction of 

QCD:
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Charged-
Cubed Sum 

Rule!

+
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Apply BCS to Exclusive Processes

Timelike e+e− → π+π−γ

Measure “timelike annihilation” DVCS
γ∗ → π+π−γ

Interferes with Bremsstrahlung from the an-
nihilating leptons.

Electron-Positron asymmetry measures in-
terference of pion form factor and DVCS am-
plitude.

New Application:  Timelike DVCS

Afanasev, 
SJB, 

CEC?

Re M†(γ∗ → π+π−)×M(γ∗ → π+π−γ)

Extend to all hadron pairs.

Single spin asymmetries give conjugate phase.
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Conformal symmetry: 
Template for QCD

• Initial approximation to PQCD; correct for non-
zero beta function

• Commensurate scale relations: relate observables 
at corresponding scales

• Infrared fixed-point for αs

• Effective Charges: analytic at quark mass 
thresholds

• Eigensolutions of Evolution Equations
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• Discretized Light-Cone Quantization

• Transverse Lattice

• Bethe-Salpeter/Dyson Schwinger at fixed LF time

• Use AdS/CFT solutions as starting point!

• Many model field theories solved

• Structure of Solutions known

Solving the LF Heisenberg 
Equation
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Quantum Chromodynamics

• A Scientific Revolution for Nuclear and Hadron 
Physics

• Novel features of Nuclear Chromodynamics: 
Hidden Color, Color Transparency

• Conformal Aspects of QCD

• The N-N Interaction in QCD

• Origin of Shadowing & Anti-Shadowing


